The study titled ‘Critical Metals in Strategic Energy Technologies’ conducted by the Joint Research Centre (JRC) has revealed that five rare earth metals, which include gallium, tellurium, indium, dysprosium and neodymium, used in the production of low-carbon technologies are at risk of scarcity.
According to the study, the causes of scarcity of these metals are geopolitical problems, supply concentration, rising global demand and Europe's reliance on imports. Moreover, these materials cannot be replaceable or recyclable easily. This study has been conducted subsequent to the publication of a European Commission report on essential raw materials at European Union in 2010.
The study suggests plans to eliminate scarcity so as to implement the Strategic Energy Technology (SET) Plan of the European Commission to gear up the development and implementation of low-carbon technologies. The study covers the utilization of raw materials, primarily metals, in the six major low-carbon technologies of the SET Plan such as electricity grids, carbon capture and storage, bio-energy, wind, solar and nuclear.
For instance, a large-scale solar power installation will need 25% of the current global supply of indium and 50% of the supply of tellurium, while a large wind power farm will need significant quantities of dysprosium and neodymium for its permanent magnet generators. China supplies almost all these metals to Europe.
The study recommends possible strategies to eliminate or reduce scarcity of these materials through replacing with other less essential materials, implementing alternative technologies and augmenting primary production of Europe by opening dormant or new mines and promoting reutilization and recycling. The JRC will conduct similar studies in the coming years on other energy technologies utilizing critical metals including fuel cells, lighting, electricity storage, and electric vehicles.