Posted in | Microscopy

Scanning Probe Microscopy

Scanning Probe Microscopy

Scanning Probe Microscopy brings up to date a constantly growing knowledge base of electrical and electromechanical characterization at the nanoscale. This comprehensive, two-volume set presents practical and theoretical issues of advanced scanning probe microscopy (SPM) techniques ranging from fundamental physical studies to device characterization, failure analysis, and nanofabrication. Volume 1 focuses on the technical aspects of SPM methods ranging from scanning tunneling potentiometry to electrochemical SPM, and addresses the fundamental physical phenomena underlying the SPM imaging mechanism. Volume 2 concentrates on the practical aspects of SPM characterization of a wide range of materials, including semiconductors, ferroelectrics, dielectrics, polymers, carbon nanotubes, and biomolecules, as well as on SPM-based approaches to nanofabrication and nanolithography.

Written for:
Academic and industrial scientists and engineers from diverse disciplines such as physics, chemistry, biology, engineering, materials science, and biotechnology who use or would like to use scanning probe methods in research and development. The chapters will also be a value to advanced undergraduate and graduate students in these fields.

Table of contents
SPM Techniques for electrical characterization. -Scanning Tunneling Microscopy and Tunneling Potentiometry. -Scanning Spreading Resistance Microscopy and Scanning Potentiometry. -Scanning Capacitance Microscopy and Nanoimpedance Microscopy. -Scanning Gate Microscopy. -Force-based SPM transport measurements: KPFM, EFM and SIM. -Piezoresponse Force Microscopy. -Ultrasonic Force Microscopy. -Microwave Microscopy. -Near Field Optical Microscopy. -Electrochemical STM. -Advanced SPM Probes for Electrical Characterization. -Electrical and electromechanical imaging at the limits of resolution. -Surface Metal Insulator Transitions. -Spin polarized STM. -STM probing of molecular transport. -Kelvin Probe Force Microscopy of atomic systems. -Single-electron transport in 1D systems. -Theoretical aspects of electrical transport imaging in molecular systems. -Friction on the atomic scale. -Mechanics on the molecular scale. -Electrical SPM characterization of materials and devices. -SPM transport in semiconductors. -SCM and KPFM of semiconductor heterostructures. -SPM characterization of Ferroelectric Materials. -SCM of operational devices. -Photoinduced phenomena in semiconductor heterostructures. -SPM characterization of III-nitrides materials. -Advanced semiconductor metrology by SPM. -Transport in organic electronics. -Electrical nanofabrication. -Direct Nanooxidation. -Ferroelectric Lithography. -Resist-based SPM oxidation techniques. -Charge deposition lithography. -Electrochemical surafecSurface Modification.

Click here for further information.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this content?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.