On the way to a CO2-neutral economy, we need to perfect a whole range of technologies - including the electrochemical extraction of hydrogen from water, fuel cells, or carbon capture. All these technologies have one thing in common: they only work if suitable catalysts are used. For many years, researchers have therefore been investigating which materials are best suited for this purpose.
Blending is a powerful strategy for improving the performance of electronics, coatings, separation membranes, and other functional materials. For example, high-efficiency solar cells and light-emitting diodes have been produced by optimizing mixtures of organic and inorganic components.
The development of safe and sustainable nuclear energy fuels forms an essential part of Los Alamos National Laboratory’s energy security mission.
Resistive switching memory devices offer several advantages over the currently used computer memory technology. Researchers from the MIPT Atomic Layer Deposition Lab have joined forces with colleagues from Korea to study the impact of electrode surface morphology on the properties of a resistive switching memory cell.
The organic-inorganic hybrid perovskites (OIHPs) have a multiple application on solar cells, lighting-emitting diodes (LEDs), field effect transistors (FETs) and photodetectors. Among the parameters valuing the power conversion efficiency (PCE) of devices based on perovskite materials, the mobility of carriers undoubtedly captures a high weight.
Inspired by nature, researchers at The City College of New York (CCNY) can demonstrate a synthetic strategy to stabilize bio-inspired solar energy harvesting materials. Their findings, published in the latest issue of Nature Chemistry, could be a significant breakthrough in functionalizing molecular assemblies for future solar energy conversion technologies.
Using modern nanotechnology, it is possible nowadays to produce structures which have a feature sizes of just a few nanometres. This world of the most minute particles - also known as quantum systems - makes possible a wide range of technological applications, in fields which include magnetic field sensing, information processing, secure communication or ultra-precise time keeping.
Life on Earth primarily depends on the self-organization and production of biological macromolecules.
Japanese scientists have stumbled onto a simple method for controlling the introduction of defects, called 'vacancy layers', into perovskite oxynitrides, leading to changes in their physical properties. The approach, published in the journal Nature Communications, could help in the development of photocatalysts.
Prevalent piezoelectric materials like barium titanate (BaTiO3) and lead zirconate titanate (PZT) possess high piezoelectric coefficients 20-800 pC/N, which are also ferroelectric.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.