Some atoms don't always follow the rules.
Take the beryllium dimer, a seemingly simple molecule made up of two atoms that University of Delaware physicists Krzysztof Szalewicz and Konrad Patkowski and colleague Vl...
More than 100 international scientists took part in the ESS Workshop on particle and medical physics. The participation exceeded the expectations, showing the very large interest for ESS as a unique research tool for fun...
CERN's Large Hadron Collider has become the world's highest energy particle accelerator, having accelerated its twin beams of protons to an energy of 1.18 TeV in the early hours of the morning. This exceeds the p...
Achieving an important new capability in ultracold atomic gases, researchers at the Joint Quantum Institute, a collaboration of the National Institute of Standards and Technology (NIST) and the University of Maryland, have created "synthetic" magnetic fields for ultracold gas atoms, in effect "tricking" neutral atoms into acting as if they are electrically charged particles subjected to a real magnetic field.
The concept of confinement is one of the central ideas in modern physics. The most famous example is that of quarks which bind together to form protons and neutrons. Now Prof. Bella Lake from Helmholtz-Zentrum Berlin tog...
An experiment has confirmed that spinons, particle-like magnetic excitations, can be confined in a magnetic insulator similar to the way elementary quarks are confined within individual protons and neutrons. The finding,...
Particle beams are once again zooming around the world’s most powerful particle accelerator—the Large Hadron Collider—located at the CERN laboratory near Geneva, Switzerland. On November 20 at 4:00 p.m. EST, a clockwise circulating beam was established in the LHC’s 17-mile ring.
The Freiburg Materials Research Center (FMF) will celebrate the 20th anniversary of its founding in 2010. The center will commemorate the occasion by co-organizing three symposia in February, March, and June. The festivi...
Particle beams are once again zooming around the world’s most powerful particle accelerator, the Large Hadron Collider (LHC), at the CERN laboratory near Geneva, Switzerland, where a team of University of Massachusetts Amherst physicists run experiments to collect data on fundamental atomic particles. The work could reveal new states of matter and unveil the secrets of dark matter.
Physicists from the Japanese-led multi-national T2K neutrino collaboration announced today that over the weekend they detected the first neutrino events generated by their newly built neutrino beam at the J-PARC accelerator laboratory in Tokai, Japan.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.