MIT's Rahul Sarpeshkar is now applying architectural principles from ultra-energy-efficient cells to the design of low-power, highly parallel, hybrid analog-digital electronic circuits. Such circuits could one day be used to create ultra-fast supercomputers that predict complex cell responses to drugs.
MIT researchers have discovered a way to make microelectromechanical devices, or MEMS, by stamping them onto a plastic film. That should significantly reduce their cost, but it also opens up the possibility of large sheets of sensors that could, say, cover the wings of an airplane to gauge their structural integrity.
There was a time when cars were going to be made entirely of plastic. There seemed to be no limit to the capabilities of the new wonder material but it was a triumph of hope over reality.
Plastics have been widely use...
A symposium which will reveal new methods for making future low-power, lighter, smarter and more economical computers and mobile phones will take place at the University of Southampton next week and has attracted almost ...
A radical new kind of computer memory will be a million times faster than existing hard-drives, a leading expert in the field of nanotechnology announced today in Sydney.
It will use nanotechnology to manipulate data ...
Just as the heartbeats of today's electronic devices depend on the ability to switch the flow of electricity in semiconductors on and off with lightning speed, the viability of the "spintronic" devices of the future -- technologies that manipulate both the flow and magnetic "spin" of electrons -- will require similarly precise control over semiconductor magnetism.
At today's International Solid State Circuit Conference (ISSCC), Holst Centre, imec and TNO present a dual-gate-based organic RFID chip with record data rate and lowest reported operating voltage. For the first time,...
A new method for manipulating the molecules of liquid crystals in ways previously unachieved could result in more effective industrial sealants, improved food packaging and even enhanced electronic displays, says Zhengdong Cheng, a Texas A+M University assistant professor of chemical engineering.
Scientists and engineers at Lawrence Livermore National Laboratory are now developing the electronics for a third-generation artificial retina as part of the U.S. Department of Energy (DOE) project to produce an "epiretinal prosthesis" that could restore vision to millions of people around the world suffering from eye diseases.
Currently, researchers are working hard to find new approaches to overcome the physical limits on downscaling and integration of microchips. One such concept is to fabricate a completely new transistor architecture in three-dimensions. In this concept, instead of arranging them flat on the substrate the silicon transistors are turned by 90 degrees so that they stick out of the chip substrate like tiny columns. In this way, numerous vertical transistors could be built on the area normally occupied by only one planar transistor. This would finally be the step from micro to nanoelectronics.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.