Posted in | News | Biomaterials

New Model Helps Optimize Stent Design

Researchers have been puzzled in recent years by observations that drug-releasing stents (mesh-like tubes implanted to hold patients' coronary arteries open) can increase the likelihood of blood clots and heart attacks. Now, a mathematical model developed by MIT engineers can predict whether particular types of stents are likely to cause life-threatening side effects.

The model "helps explain why some stents are better than others, and could predict which stents are predisposed to cause clotting," said Elazer Edelman, the Thomas D. and Virginia W. Cabot Professor of Health Science and Technology (HST) and senior author of a paper on the work appearing as the cover story of the Jan. 5 issue of the Journal of Controlled Release.

Edelman and HST postdoctoral associates Vijaya Kolachalama and Abraham Tzafriri designed the model to predict how the size and shape of a stent affects blood flow and drug distribution.

Drug-releasing stents are used in more than a million patients per year in the United States. The drugs, including paclitaxel and rapamycin, are intended to prevent tissue from growing inside the artery after it is inflated during angioplasty.

However, drug-releasing stents have been proven a "double-edged sword," Edelman said. The drugs successfully block tissue growth that could impede blood flow, but can have the unforeseen side effect of increasing the risk of blood clots and heart attacks.

This paper explains why: Stents affect the fluid dynamics of blood flowing past them and cause drugs to accumulate in certain areas. Too much drug buildup promotes clot formation.

The MIT model shows that the dynamics of blood flowing around a stent is similar to whitewater rapids, said Edelman. When water in a river flows over a boulder, some of the water strikes the base of the boulder, flies up in the air and comes back down, instead of flowing over the rock. This water continuously recirculates in the same area.

The same thing happens when blood flows across a stent: Drugs tend to accumulate and spin around in the recirculation zone. This is most likely to happen with stents that protrude further into the artery. "Until now, the degree to which recirculation zones impact the distribution of drugs was not appreciated," said Edelman.

This is the first time that a mathematical model has successfully predicted stent performance based on changes in arterial blood flow and design, and the researchers hope the model and concepts it establishes could aid efforts to design stents that allow drugs to be more evenly distributed throughout the area.

The model could also help the FDA in its approval processes, by helping regulators figure out which stents are most likely to be safe or harmful, based on their size and shape, which controls how they will affect blood flow.

Davis Arifin, a graduate student in the MIT-Singapore Alliance, is also an author of the paper.

This research was funded by the National Institutes of Health.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.