First Rewritable Memory Device Developed Using Liquid Crystal Property

As cell phones and computers continue to shrink, many companies are seeking better ways to store hundreds of gigabytes of data in small, low-power devices.

A special type of liquid crystal, similar to those used in computer displays and televisions, offers a solution. Unlike CDs and DVDs, which store information only on their surface, lasers can encode data throughout a liquid crystal. Known as holographic storage, the technique makes it possible to pack much more information in a tiny space.

But attempts to use liquid crystals for data storage have had limited success. In order to reliably record and rewrite data, researchers must figure out a way to uniformly control the orientation of liquid crystal molecules. Currently, most liquid crystal technologies rely on physical or chemical manipulation, such as rubbing in one direction, to align molecules in a preferred direction.

In an important advance, scientists at the Tokyo Institute of Technology have created a stable, rewritable memory device that exploits a liquid crystal property called the "anchoring transition." The work is described in the latest issue of the Journal of Applied Physics, which is published by the American Institute of Physics (AIP).

Using either a laser beam or an electric field, the researchers can align rod-like liquid crystal molecules in a polymer. Their tests show that the liquid crystal created by the team can store data, be erased and used again.

"This is the first rewritable memory device utilizing anchoring transition," said Hideo Takezoe, who led the research. And because the device is bi-stable -- the liquid crystals retain their orientation in one of two directions -- it needs no power to keep images, adds Takezoe.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.