Imec Set Record for Large Area Thin-Film Silicon Solar Cells

Imec has realized large-area (70cm2) epitaxial solar cells with efficiencies of up to 16.3% on high-quality substrates. And efficiencies of up to 14.7% were achieved on large-area low-quality substrates, showing the potential of thin-film epitaxial solar cells for industrial manufacturing. The results were achieved within imec's silicon solar cell industrial affiliation program (IIAP) that explores and develops advanced process technologies aiming a sharp reduction in silicon use, whilst increasing cell efficiency and hence further lowering substantially the cost per Watt peak.

Besides wafer-based bulk silicon solar cells imec aims at developing epitaxial thin-film (<20µm) silicon solar cells grown on low-cost silicon carriers within its silicon solar cell IIAP.. The epitaxial thin-film process on low-cost silicon carriers is generically similar to the bulk process and the epi-process can be implemented with limited equipment investment in an existing crystalline silicon solar cell manufacturing line. To improve the optical confinement of light in the active part of the cell, a buried porous Si reflector is developed.

Imec realized 20ìm thick high-quality epitaxial silicon stacks both on top of a highly-doped high-quality substrate and on a low-cost, UMG (upgraded metallurgic grade)-type, multi-crystalline Si substrate. The p+-type back surface field (BSF), the p-type base and the n-type front-side emitter were grown by chemical vapor deposition. The light-trapping scheme consists of plasma texturing of the front surface in combination with an internal porous silicon Bragg reflector positioned at the epitaxial/substrate interface. The cells on the high-quality substrate are contacted with copper plating. For the cells made on the low-quality substrates, the metallization is realized with screenprinting, which is the final step after the formation of the diffused front surface field (FSF) and the silicon nitride antireflection coating. In this way, the epitaxially grown 'wafer equivalent' substrates are fully compatible with standard industrial (bulk) solar cell processing.

"These efficiencies of up to 16.3% on high-quality substrates and of up to14.7 % on low-cost substrates show that industrial-level efficiencies are within reach for this technology;" said Jef Poortmans, director imec energy/solar program. "By implementing copper-based contact schemes, we can further increase the efficiency making epitaxial thin-film silicon solar cells on low-cost wafers an interesting industrial technology."

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    IMEC. (2019, February 10). Imec Set Record for Large Area Thin-Film Silicon Solar Cells. AZoM. Retrieved on November 21, 2024 from https://www.azom.com/news.aspx?newsID=22756.

  • MLA

    IMEC. "Imec Set Record for Large Area Thin-Film Silicon Solar Cells". AZoM. 21 November 2024. <https://www.azom.com/news.aspx?newsID=22756>.

  • Chicago

    IMEC. "Imec Set Record for Large Area Thin-Film Silicon Solar Cells". AZoM. https://www.azom.com/news.aspx?newsID=22756. (accessed November 21, 2024).

  • Harvard

    IMEC. 2019. Imec Set Record for Large Area Thin-Film Silicon Solar Cells. AZoM, viewed 21 November 2024, https://www.azom.com/news.aspx?newsID=22756.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.