New, Faster Method Of Developing Synthetic Zeolites

Zeolites are minerals with a microporous structure. This makes them attractive as catalysts in industrial applications. Unfortunately, creating synthetic zeolites is very complex. Researchers at KU Leuven, Ghent University and the University of Antwerp have discovered a way to make new zeolites quickly.

The original zeolite can be represented as layers (gray) connected by cubes (yellow). The new method systematically cuts the cubes from the original material allowing the layers to be reassembled into new configurations.

“The method is faster than existing methods and contributes to the development of a more sustainable, greener chemical industry," says KU Leuven Professor Christine Kirschhock.

Zeolites are best known for their ubiquitous use as water softeners in detergents and as catalysts in industry. A catalyst is a mediator that increases the efficiency of chemical reactions, saving huge amounts of energy. Zeolites are robust and reusable – making them environmentally friendly catalysts.

There are various types of zeolites, each with their own specific structure and porous make-up. Naturally-occurring zeolites are often unsuitable for industrial applications because their pores are small. Developing synthetic zeolites, however, is very complex and often a matter of trial and error. Around 200 different synthetic zeolites currently exist, of which only 20 are actually used in industry. The desired properties of the zeolite – its composition, pore size, reusability and so on – change with each new application. Until now, designing a zeolite with predetermined characteristics was impossible.

Researchers from Leuven, Ghent and Antwerp have now experimentally demonstrated that it is possible to cut zeolite building blocks and rearrange them into a new structure. Professor Christine Kirschhock of KU Leuven explains: “A zeolite can be thought of as a set of merged building blocks. We are now able to separate certain blocks of a zeolite and then reassemble them into different configurations, depending on the desired properties.”

This generic method for creating new zeolites has significant advantages: “In addition to new possibilities for applications, the method contributes to the development of a more sustainable, greener chemical industry. It is the first-ever example of customizable zeolite design.”

The findings were recently published online in the journal Nature Materials.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.