Xradia Introduces VersaXRM-410 3D X-ray Imaging for Nondestructive Microstructure Characterization

Xradia, Inc. is announcing the expansion of its lab-based VersaXRM family to bridge the gap between high-performing 3D X-ray microscopy (XRM) solutions and traditionally lower-cost, less capable projection-based computed tomography (CT) systems.

 

Xradia's New VersaXRM-410 for Science

 

The VersaXRM-410 delivers the advantages of the VersaXRM family including highest resolution and contrast and in situ capabilities that enable ground-breaking research for the widest range of sample sizes. [See related announcement, "Xradia Highlights Groundbreaking Research Enabled by VersaXRM 3D X-ray Microscopes"].

The University of California, Irvine, is using the VersaXRM-410 to nondestructively characterize the microstructure and mechanics of composite materials with applications in civil, mechanical, aerospace and biomedical engineering. Professor Lizhi Sun says, "The newly installed VersaXRM-410 lets us characterize the behavior and local deformation of materials in 3D in their native environments (in situ) while uniquely maintaining sub-micron resolution across an array of sample dimensions and environments. What's even more powerful is that we can extend the understanding of a material's microstructure to the 4th dimension (3D + time) by studying how a microstructure evolves over time, and quantify that change. Only non-destructive X-ray tomography lets us achieve that goal."

Dr. Kevin Fahey, Chief Materials Scientist and VP of Marketing at Xradia, says the VersaXRM family was architected to make advanced imaging capabilities available to more researchers worldwide. "Research facilities face economic constraints, but at the same time, studies increasingly demand the non-destructive, high-resolution, high-contrast 3D imaging enabled by XRM," Fahey says. "VersaXRM brings synchrotron-like capabilities to the lab, overcoming the resolution and contrast limitations of traditional micro-computed tomography approaches to advance studies being conducted today and into the future."

VersaXRM: Extending the Boundaries of Science

The VersaXRM family with its unique architecture offers the only imaging solution that combines:

  • Non-destructive 3D X-ray imaging, preserving and extending the use of valuable samples
  • High resolution: 0.9 µm true spatial resolution on the VersaXRM-410 with minimum achievable voxel size of 100 nm*
  • Advanced contrast: absorption contrast and unique phase contrast enable unparalleled imaging quality for soft materials such as unstained tissue or low-Z materials like carbon fibers and polymers, with the ability to differentiate between phases of similar density
  • Industry-leading 4D and in situ capabilities including for flexible sample sizes and types, enabled by the VersaXRM's Resolution at a Distance (RaaD™)

Leveraging Xradia's pre-eminent position as a provider of X-ray microscopes to the synchrotron community, the introduction of the award-winning VersaXRM-500 in 2011 extended the boundaries of lab-based imaging. Since then, VersaXRM family instruments have advanced groundbreaking research in numerous fields such as in materials science, life sciences, oil and gas exploration, mineralogy, and the electronics industry.

The VersaXRM-410: Bridging the Cost-Resolution Gap

The VersaXRM-410 microscope represents a powerful "workhorse" solution that is ideally suited to diverse lab environments. The instrument delivers the high resolution associated with VersaXRM at costs more typical of lower resolution micro- or nano-CT solutions.

Standard on the VersaXRM-410 is Xradia's Scout-and-Scan™ Control System, providing easy set-up and control of experiments for a wide range of users with varying skillsets typical of a busy scientific imaging lab. The system also features Wide Field Mode (WFM) offering up to a 90 mm 3D field of view, double the capability of older systems. A new enhanced workstation provides higher performance while keeping the system in cost/performance ranges accessible to a large spectrum of users and research institutions. Additionally, a new optional 150kV 30W high power source enables up to 3X faster imaging for the largest fields of view.

*About Resolution

Voxel (sometimes referred to as "nominal resolution" or "detail detectability") is a geometric term that contributes to but does not equal resolution. Xradia specifies on spatial resolution, the most meaningful measurement of an instrument's performance.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Xradia. (2023, April 10). Xradia Introduces VersaXRM-410 3D X-ray Imaging for Nondestructive Microstructure Characterization. AZoM. Retrieved on November 22, 2024 from https://www.azom.com/news.aspx?newsID=36311.

  • MLA

    Xradia. "Xradia Introduces VersaXRM-410 3D X-ray Imaging for Nondestructive Microstructure Characterization". AZoM. 22 November 2024. <https://www.azom.com/news.aspx?newsID=36311>.

  • Chicago

    Xradia. "Xradia Introduces VersaXRM-410 3D X-ray Imaging for Nondestructive Microstructure Characterization". AZoM. https://www.azom.com/news.aspx?newsID=36311. (accessed November 22, 2024).

  • Harvard

    Xradia. 2023. Xradia Introduces VersaXRM-410 3D X-ray Imaging for Nondestructive Microstructure Characterization. AZoM, viewed 22 November 2024, https://www.azom.com/news.aspx?newsID=36311.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.