Posted in | News | Business | Photovoltaics

New Report on Technologies, Markets, and Players in Organic Photovoltaics

Research and Markets has announced the addition of the "Organic Photovoltaics (OPV) 2013-2023: Technologies, Markets, Players" report to their offering.

In this report, we develop technology roadmaps or guidelines, which forecast improvements in module efficiency, lifetime and costs over the next decade. They provide a practical insight into how the technology is likely to evolve. We also assess the merits of OPV technologies for a diverse range of market segments, including automotive, posters and point-of-purchase (PoP) advertisement, apparel, customer electronics, off-grid applications for the developing world, power generation, and building integrated photovoltaics.

The photovoltaic (PV) market remains an extremely volatile sector for suppliers. Currently, crystalline silicon devices control 85% of market, with the remainder being captured by a range of thin film PV devices including CdTe, CIGS, and a-Si. Margins are increasingly tight for on-grid technologies.

Now there is a third-wave of PV technologies entering the market. This wave consists of dye sensitised solar cells (DSSC) and organic photovoltaics (OPV). In this report, we provide a detailed assessment of the technology and markets for OPVs, which are being used where conventional PV cannot go, changing the value-added opportunity.

OPVs bring the following attributes to the market: (a) excellent form factor, (b) good performance under indoor lighting conditions, (c) low capital expenditure, and (d) potentially very low energy production costs using printable plastics. Based on these value propositions, OPVs will not only target existing markets, but will also enable new ones, which existing solutions may not have been able to address.

Not all is well with OPVs, however. The efficiency levels are low, despite the fact that the active semiconductor can be synthesised from many different molecular and polymeric materials. The lifetime is in the order of days if the device is exposed to ambient conditions and existing commercial encapsulants can extend it only to 2-3 years. The constituent materials are still in low-volume production and therefore command high prices.

In this report, we develop technology roadmaps or guidelines, which forecast improvements in module efficiency, lifetime and costs over the next decade. These roadmaps are developed based on extensive interviews with researchers, material suppliers, manufacturers and integrators around the world. They provide a practical insight into how the technology is likely to evolve.

We also assess the merits of OPV technologies for a diverse range of market segments, including automotive, posters and point-of-purchase (PoP) advertisements, apparel (clothes, sportswear, military uniforms, etc), customer electronics (e-readers, mobile phones, watches, toys, etc), off-grid applications for the developing world, power generation, and building integrated photovoltaics. For each application, we interview developers and end-users and perform detailed numerical estimates.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.