NIST Improves Reliability of GPS Clocks

The average user may not notice, but the Global Positioning System (GPS) is more reliable today than it was several years ago.

Widely used by the military, first responders, surveyors and even consumers, GPS is a navigation and positioning system consisting of ground-based monitors and a constellation of satellites that rely on atomic clocks. A statistical method, developed by the National Institute of Standards and Technology (NIST) and tested and implemented with the help of several collaborators, has made the job of analyzing the accuracy and reliability of these satellite-borne time signals significantly faster and easier. The method will help ensure that GPS clocks produce accurate location and distance measurements and remain closely synchronized with official world time.

The NIST method, described in a recent paper, has been incorporated over the past few years into the GPS clock analysis software system managed by the Naval Research Laboratory (NRL). The satellite clocks--commercial devices based in part on research originally done at NIST--use the natural oscillations of rubidium atoms as "ticks," or frequency standards. The algorithm helps detect and correct GPS time and frequency anomalies. The algorithm also can be used to improve the control of other types of atomic clocks and has been incorporated into commercial software and instruments for various timing applications, according to NIST electronics engineer David Howe, lead author of the paper.

A GPS receiver pinpoints its location based on the distance to three or more GPS satellites at known locations in space. The distance is calculated from the time it takes for satellite radio signals to travel to the receiver. Thus, timing accuracy affects distance measurements. The NIST method makes a series of mathematical calculations to account for numerous measures of random "noise" fluctuations in clock operation simultaneously.

This makes it easier to estimate many sources of error and identify the onset of instabilities in the clocks in minutes or hours rather than days. Adjustments then can be made promptly. The technique also could accelerate the evaluation of clocks during the process of building GPS satellites, where test time is at a premium. "Ultimately, it should improve reliability, stability and accuracy for many people who use GPS for time and navigation,"said Howe.

Co-authors of the paper include scientists from NRL, the Jet Propulsion Laboratory at the California Institute of Technology, the Observatoire de Besancon in France, and Hamilton Technical Services in South Carolina.

http://www.nist.gov/

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    NIST Standard Reference Materials. (2019, March 02). NIST Improves Reliability of GPS Clocks. AZoM. Retrieved on November 23, 2024 from https://www.azom.com/news.aspx?newsID=4097.

  • MLA

    NIST Standard Reference Materials. "NIST Improves Reliability of GPS Clocks". AZoM. 23 November 2024. <https://www.azom.com/news.aspx?newsID=4097>.

  • Chicago

    NIST Standard Reference Materials. "NIST Improves Reliability of GPS Clocks". AZoM. https://www.azom.com/news.aspx?newsID=4097. (accessed November 23, 2024).

  • Harvard

    NIST Standard Reference Materials. 2019. NIST Improves Reliability of GPS Clocks. AZoM, viewed 23 November 2024, https://www.azom.com/news.aspx?newsID=4097.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.