New Olympus Application Note Explores New Avenues in Organic Solar Cell Research

Moving towards the sustainable manufacture of photovoltaics, Dr Manuela Schiek’s research group at the University of Oldenburg, Germany has discovered how the quick and non-destructive nature of the Olympus LEXT OLS4100 high-resolution analysis and stitching function capabilities have enhanced their research.

Dr Manuela Schiek at the Olympus LEXT OLS4100

Current solar cell manufacture processes are quite hazardous and energy consuming in contrast to the ‘green’ intentions of the end products. Dr Schiek’s research focuses on alternative materials for solar cell manufacture that are non-hazardous and readily available, including the use of organic semiconductors and a transparent electrode system formed from a silver nanowire mesh.

With its complex multi-layered structure, surface analysis techniques provide vital insights into the workings of a solar cell. Combining the ability to generate detailed, true-colour optical images with the non-contact capabilities of laser scanning technology, the LEXT 3D CLSM enables exceptional high precision optical profilometry and metrology. In Schiek’s work, the LEXT was employed to accurately measure the thickness of organic semiconductor materials in the energy-capturing active layer of solar cells as this can critically affect their efficiency. The LEXT was found to be faster, more efficient and more accurate than stylus-based techniques through its non-contact capability to measure soft or adhesive surfaces at high-resolution.

The expanded field of view offered by the rapid and intuitive stitching function of the LEXT also markedly improved the efficiency of surface roughness evaluation in comparison to Atomic Force Microscopy (AFM). The LEXT enabled viewing of a more representative sample of silver wire mesh on the transparent electrode surface and this combined with the wide magnification range helped to identify regions of unwanted aggregation that would otherwise have been missed. Dr Schiek commented, “The LEXT has been a great asset in our work. As well as being much faster than AFM, the area that you can inspect is a lot larger, with true colours and a 3D height profile for more insightful analyses”.

For the whole story, the application note is available to view on the Olympus IMS website.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Evident Corporation - Industrial Microscopy. (2019, February 08). New Olympus Application Note Explores New Avenues in Organic Solar Cell Research. AZoM. Retrieved on November 21, 2024 from https://www.azom.com/news.aspx?newsID=42315.

  • MLA

    Evident Corporation - Industrial Microscopy. "New Olympus Application Note Explores New Avenues in Organic Solar Cell Research". AZoM. 21 November 2024. <https://www.azom.com/news.aspx?newsID=42315>.

  • Chicago

    Evident Corporation - Industrial Microscopy. "New Olympus Application Note Explores New Avenues in Organic Solar Cell Research". AZoM. https://www.azom.com/news.aspx?newsID=42315. (accessed November 21, 2024).

  • Harvard

    Evident Corporation - Industrial Microscopy. 2019. New Olympus Application Note Explores New Avenues in Organic Solar Cell Research. AZoM, viewed 21 November 2024, https://www.azom.com/news.aspx?newsID=42315.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.