Posted in | News | Electronics | Packaging

SEMI FlexTech Funds New Cutting-Edge Projects for Flexible Electronics

SEMI-FlexTech, the industry-led, public and private partnership dedicated to growing the flexible and printed electronics ecosystem, today announced new projects featuring novel interconnect and integration strategies to move innovations to market-ready products. The projects include thin batteries, printed audio speaker systems, and flexible fan-out wafer level packaging advances.

The SEMI FlexTech R&D program is driving significant advances in the infrastructure required to support world-class manufacturing capabilities for FHE devices and products,” said Dr. Melissa Grupen-Shemansky, SEMI CTO for flexible electronics and advanced packaging. “These projects are on the cutting edge of integration and demonstrate the value of collaboration in innovation to bring new products to market.

New Projects

Led by ITN Energy Systems, in partnership with Molex, ENrG, Sunray Scientific, and University of Rhode Island, the project aims to develop ultra-thin charge control circuits for an optimized ultra-thin battery as a renewable, self-recharging, lightweight, flexible power source. The battery will power sensor systems for mobile applications. Compared to today’s commercially available batteries, the power package is expected to be smaller, feature greater sensitivity and response time, enable lower power consumption and support optimal temperature and humidity ranges.

The team will first demonstrate a monolithically integrated power module with integrated ultra-thin charge control circuitry and photovoltaics. It will then explore integrating a sensor system into the battery system and, ultimately, creating a working power module that includes a sensor, signal processing, and telemetry all within a package less than 250 microns thick. The project is scheduled to last 15 months and funded at a total of $2.4 million with a 48 percent cost share by industry partners.

Led by UCLA in partnership with i3 Microsystems, the second new contract is for the demonstration of a new electrode array that identifies muscle fatigue in in training combatants and provides rehabilitation therapies from neural-trauma or neuropathic disorders. The team will create an advanced electromyography electrode array and commercial CMOS chip in a fan-out-wafer-level-package (FOWLP) based on a biocompatible platform for heterogeneous integration. The FOWLP enables a small form factor, with the biocompatibility enabled by a new molding compound. The project is scheduled for 18 months at a total of $1 million with a 50 percent cost share.

Completed Projects

PARC, a Xerox Company, developed, fabricated and demonstrated a highly-flexible, wireless, audio-actuated system. The PARC team collaborated with other consortium members to use a novel material set including thinned die, die attach compounds, audio material, resistor material, and substrate. The team evaluated the performance and flexibility of the die attach, measured robustness and performance of the components and printed circuitry, and then developed an integration and test process. The project lasted one year with total funding of $572,000 at 50 percent industry cost share.

ITN Energy Systems, as the lead in partnership with Lucintech, ENrG, and Molex, created an ultra-thin (less than 250 microns thick), solid-state, lithium, secondary battery for printed devices with integrated photovoltaic cells for self-recharging. The resulting power component is ideal for Internet of Things (IoT), wireless, wearable and sensor capabilities for flexible and printed devices. Compared to other commercially available products, the prototype provides the highest lifecycle energy in the smallest volume without sacrificing operational capabilities. The project spanned 15 months at a total of $983,000 with a 52 percent industry cost share.

SEMI FlexTech selects and funds projects under a cooperative agreement with the U.S. Army Research Laboratories (ARL). The program regularly issues requests for proposals and invites any organization to submit proposals in a two-stage process.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.