DuPont and ExxonMobil Chemical Strengthen Bond with New TPVs for Corner Mold Automotive Seals

DuPont Transportation & Industrial today announced the resounding success of its close collaboration with ExxonMobil Chemical’s specialty elastomers business to develop new Santoprene™ thermoplastic vulcanizates (TPVs) for automotive corner mold seals.

By replacing traditional organic slip additives with DuPont’s engineered silicone-based additives, the two companies formulated a next-generation Santoprene TPV platform with improved bonding to ethylene propylene diene monomer (EDPM) rubber substrates and a lower coefficient of friction (COF) for the easy opening and closing of doors and windows. The new Santoprene TPV B260 family of products also delivers improved flow properties, abrasion resistance and ultraviolet (UV) light stability.

ExxonMobil Chemical’s New Santoprene™ TPVs for Automotive Corner Mold Seals

“Our successful collaboration with ExxonMobil Chemical has achieved much more than cutting-edge TPV products,” said Christophe Paulo, marketing manager, DuPont. “It has also laid the foundation for future projects that take advantage of the unique attributes of our silicone technologies to solve industry challenges and deliver a better consumer experience.”

Taking TPVs to the Next Level

To address customer needs for improved corner mold seals, ExxonMobil Chemical sought to enhance the bonding of Santoprene TPV to EDPM rubber while increasing its sliding performance. However, reducing COF to increase sliding performance can negatively impact bonding. The company collaborated with DuPont to explore the use of its advanced silicone-based additives, which promised to surpass the organic additives ExxonMobil had been incorporating.

The DuPont development team found that synergies between a lower molecular weight silicone polymer and an ultra-high molecular weight silicone polymer delivered the low COF ExxonMobil Chemical was looking for. While delivering better sliding properties than the organic additives, the silicone technology enhanced bonding performance to dense EPDM rubber – a critical factor in overmolding. Further, it enabled higher flow for improved processing ease and throughput, better abrasion resistance to protect against damage from slammed doors and improved UV stability to help prevent cracking and discoloration.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.