New Study Seeks Materials that Support Ultra-Fast, Ultra-Low-Energy Spintronics

A University of Wollongong team has published an extensive review of spin-gapless semiconductors (SGSs) .

Spin gapless semiconductors (SGSs) are a new class of zero gap materials which have fully spin polarised electrons and holes.

The study tightens the search for materials that would allow for ultra-fast, ultra-low energy 'spintronic' electronics with no wasted dissipation of energy from electrical conduction.

Their defining property of SGS materials relates to their 'bandgap', the gap between the material's valence and conduction bands, which defines their electronic properties.

In general, one spin channel (ie, one of the spin directions, up or down) is semiconducting with a finite band gap, while the other spin channel has a closed (zero) band gap.

In a spin-gapless semiconductor (SGS), conduction and valence band edges touch in one spin channel, and no threshold energy is required to move electrons from occupied (valence) states to empty (conduction) states.

This property gives these materials unique properties: their band structures are extremely sensitive to external influences (eg, pressure or magnetic field).

Most of the SGS materials are all ferromagnetic materials with high Curie temperatures.

The band structures of the SGSs can have two types of energy-momentum dispersions: Dirac (linear) dispersion or parabolic dispersion.

The new review investigates both Dirac and the three sub-types of parabolic SGSs in different material systems.

For Dirac type SGS, their electron mobility is two to four orders of magnitude higher than in classical semiconductors. Very little energy is needed to excite electrons in an SGS, charge concentrations are very easily 'tuneable'. For example, this can be done by introducing a new element (doping) or by application of a magnetic or electric field (gating).

The Dirac type spin gapless semiconductors exhibit fully spin polarized Dirac cones and offer a platform for spintronics and low-energy consumption electronics via dissipationless edge states driven by the quantum anomalous Hall effect.

"Potential applications of SGSs in next-generation spintronic devices are outlined, along with low- electronics, and optoelectronics with high speed and low energy consumption." according to Professor Xiaolin Wang, who is the Director of Institute for Superconducting and Electronic Materials, UoW and the theme leader of FLEET.

Since spin-gapless semiconductors (SGSs) were first proposed by s Professor Xiaolin Wang in 2008, efforts worldwide to find suitable candidate materials have particularly focussed on Dirac type SGSs.

In the past decade, a large number of Dirac or parabolic type SGSs have been predicted by density functional theory, and some parabolic SGSs have been experimentally demonstrated in both monolayer and bulk materials.

The Reiew

The review paper Spin-Gapless Semiconductors was published in the journal Small in June 2020 (DOI 10.1002/smll.201905155).

The authors acknowledge funding support from the Australian Research Council through the Centre of Excellence program, and thank Tania Silver for her contribution.

Novel Materials at FLEET

The properties of novel and atomically-thin materials are studied at FLEET, an Australian Research Council Centre of Excellence, within the Centre's Enabling technology A.

The Centre for Future Low-Energy Electronics Technologies (FLEET) is a collaboration of over a hundred researchers, seeking to develop ultra-low energy electronics to face the challenge of energy use in computation, which already consumes 8% of global electricity, and is doubling each decade.

Review co-author Prof Xiaolin Wang leads FLEET's University of Wollongong node, as well as leading the Enabling Technology team developing the novel and atomically thin materials underpinning FLEET's search for ultra-low energy electronics, managing synthesis and characterisation of novel 2D materials at the University of Wollongong

Prof Wang leads FLEET's efforts to exploit charge and spin quantum effects in magnetic topological insulators as well as fabricating high-quality samples for joint research with FLEET researchers at Monash, UNSW, ANU and RMIT.

Dr Zengji Yue is a FLEET Research Fellow working alongside Prof Wang at the Institute for Superconducting & Electronic Materials and Australian Institute for Innovative Materials (AIIM) in University of Wollongong, Australia. Dr Yue's research focuses on nanofabrication, quantum transport, and optics of topological and spin gapless materials. He designs and fabricates electronic and optical devices taking advantage of novel physics of topological materials.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.