New Algorithm can Help Improve Cellular Materials Design

New research published in Scientific Reports has revealed that a simple but robust algorithm can help engineers to improve the design of cellular materials that are used in a variety of diverse applications ranging from defence, bio-medical to smart structures and the aerospace sector.

Illustrations of four robust micro-structure topologies of extreme metamaterials emerged from the proposed framework. © Swansea University.

The way in which cellular materials will perform can be uncertain and so calculations to help engineers predict how they will react for a particular design, for a given set of loads, conditions and constraints, can help maximise their design and subsequent performance.

The research collaborators at the Faculty of Science and Engineering, Swansea University, Indian Institute of Technology Delhi and Brown University, USA, found that running specialised calculations can help engineers to find the optimum micro-structure for cellular materials that are used for a wide range of purposes, from advanced aerospace applications to stents used for blocked arteries.

Research co-author Dr Tanmoy Chatterjee said:

“This paper is the result of one year of sustained collaborative research. The results illustrate that uncertainties in the micro-scale can drastically impact the mechanical performance of metamaterials. Our formulation achieved novel microstructure designs by employing computational algorithms which follow the evolutionary principles of nature.”

Co-author Professor Sondipon Adhikari explains:

“This approach allowed us to achieve extreme mechanical properties involving negative Poisson’s ratio (auxetic metamaterial) and elastic modulus. The ability to manipulate extreme mechanical properties through novel optimal micro-architecture designs will open up new possibilities for manufacturing and applications.”

Read the research in Scientific Reports.

Extreme metamaterial micro‑structures by robust topological designs

Video Credit: Swansea University

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.