Posted in | News | Materials Analysis

Hiden Analytical Unveils Advanced Detection of Silicone Contamination in Industrial Applications

Hiden Analytical a leader in materials analysis and diagnostics, today announced a breakthrough in detecting and analyzing silicone contamination in various industrial settings. The company's latest application highlights the critical issue of Polydimethylsiloxane (PDMS) contamination, a common silicone-based compound used in numerous products like lubricants, cosmetics, food additives, and sealants.

Image Credit: Hiden Analytical

PDMS, while inert, non-toxic, and non-flammable, poses a significant risk in specific industrial processes. It can degrade into silicon dioxide, potentially forming an insulating layer in electronic components and hindering adhesion in surface bonding applications. Moreover, due to its resilient nature, PDMS is notoriously difficult to remove, making contamination a critical concern. As PDMS is highly surface mobile, incomplete removal can result in recoating after cleaning.

Secondary Ion Mass Spectrometry (SIMS) can easily detect PDMS contamination, even when it is only one molecule thick. However, SIMS is traditionally one of the most expensive surface analysis techniques and is often reserved for the highest value products. Hiden Analytical have developed very cost-effective instrumentation, using SIMS technology, that can rapidly detect the presence of silicone and a technique that means the component does not even have to be placed in the instrument’s vacuum chamber.

A key advantage to using SIMS is that even when the silicone has become degraded the resulting silicon dioxide layer can be analysed and even the thickness of damaging glass layer measured. “Understanding and addressing industrial contamination is critical for maintaining quality and efficiency in manufacturing," said Dr Graham Cooke, Principal Scientist at Hiden Analytical. "Our advanced SIMS technology offers unprecedented depth resolution, capable of detecting nanometre-sized features and providing detailed insights into the effects of contamination."

This development is not just a technical achievement; it represents Hiden Analytical's commitment to supporting industries in tackling the challenges posed by microscopic contaminants. The application of SIMS, particularly in semiconductor manufacturing and other fields requiring high purity materials, showcases the potential of this technology in enhancing quality control and product integrity.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Hiden Analytical. (2024, February 09). Hiden Analytical Unveils Advanced Detection of Silicone Contamination in Industrial Applications. AZoM. Retrieved on November 21, 2024 from https://www.azom.com/news.aspx?newsID=62526.

  • MLA

    Hiden Analytical. "Hiden Analytical Unveils Advanced Detection of Silicone Contamination in Industrial Applications". AZoM. 21 November 2024. <https://www.azom.com/news.aspx?newsID=62526>.

  • Chicago

    Hiden Analytical. "Hiden Analytical Unveils Advanced Detection of Silicone Contamination in Industrial Applications". AZoM. https://www.azom.com/news.aspx?newsID=62526. (accessed November 21, 2024).

  • Harvard

    Hiden Analytical. 2024. Hiden Analytical Unveils Advanced Detection of Silicone Contamination in Industrial Applications. AZoM, viewed 21 November 2024, https://www.azom.com/news.aspx?newsID=62526.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.