Posted in | News | Photonics | Electronics

First 'Molecular Movie' of the Elementary Interaction Between Light and Matter

Oxford University, the Lawrence Berkeley Laboratory in California, and the Massachusetts Institute of Technology have together made the first 'molecular movie' of the elementary interaction between light and matter, measuring what happens on a microscopic level when light travels though a medium.

The lead author of the study to be published in Nature, Dr Andrea Cavalleri at the Oxford University Department of Physics, said: 'We've all seen how a stick in a pond appears to be at a different angle depending on whether we look at it from outside or inside the water. At a microscopic level, this effect depends on how stiff atomic bonds are and with how much delay atoms and electrons respond when they are placed in the rapidly wiggling electric field of light.

'If you want to understand the propagation of light at microscopic level, especially in some the complex materials that are of interest for modern opto-electronic applications, you need to make a 'molecular movie' of how the atoms and electrons wiggle in the light field. To do so, you need to find a camera with an extremely quick shutter speed – that of a handful of femtoseconds (which is less than one thousandth of a billionth of a second).

'This very fast timescale can be reached with modern laser technology – but lasers can't see where the constituents atoms actually are. If you want to see this 'shape' of a molecule you need x-rays, but there are currently no x-rays beams with short enough pulses to take snapshots of atomic motions.

'What we have managed to do is combine ultrafast laser pulses with electron beams in a particle accelerator, deflecting a small slice of the long electron pulse on a separate orbit of the accelerator. Thus, these electrons radiated short enough x-ray pulses to measure elementary atomic motions on the femtosecond timescale. This enabled us to measure the motion of charged atoms on the ultra fast timescale with an accuracy of less than one thousandth of one billionth of a meter. This means we are capable of resolving in time the displacements of atoms by less than one atomic nucleus.

'This technology can now be applied to other elementary processes at the microscopic level, and we can measure their displacements with unprecedented speed and resolution.'

http://www.ox.ac.uk/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.