Leading a collaboration of institutions in the U.S. and abroad, the Princeton University Department of Chemistry is reporting new topological properties of the magnetic pyrite Cobalt disulfide (CoS2) that expand our understanding of electrical channels in this long-investigated material.
Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania have identified ultra-fast gas flows through the tiniest holes in one-atom-thin membranes, in a study published in Science Advances.
Oak Ridge National Laboratory researchers have developed a new family of cathodes with the potential to replace the costly cobalt-based cathodes typically found in today's lithium-ion batteries that power electric vehicles and consumer electronics.
For understanding the structure and function of catalysts in action, researchers of Karlsruhe Institute of Technology (KIT), in cooperation with colleagues from the Swiss Light Source SLS of Paul Scherrer Institute (PSI) in Switzerland and the European Synchrotron Radiation Facility (ESRF) in France, have developed a new diagnostic tool.
Progress towards 'cold fusion,' where nuclear fusion can occur at close to room temperatures, has now been at a standstill for decades. However, an increasing number of studies are now proposing that the reaction could be triggered more easily through a mechanism involving muons - elementary particles with the same charge as electrons, but with around 200 times their mass.
A team of scientists have solved the longstanding problem of how electrons move together as a group inside cylindrical nanoparticles.
Electronics are increasingly being paired with optical systems, such as when accessing the internet on an electronically run computer through fiber optic cables.
At the Institute of Industrial Science of The University of Tokyo, scientists have simulated the glass-forming potential of metallic mixtures by using molecular dynamics calculations.
Advanced metal alloys are essential in key parts of modern life, from cars to satellites, from construction materials to electronics. But creating new alloys for specific uses, with optimized strength, hardness, corrosion resistance, conductivity, and so on, has been limited by researchers' fuzzy understanding of what happens at the boundaries between the tiny crystalline grains that make up most metals.
PTR3-TOF 10K is honored with "The Analytical Scientist Innovation Award"
Each year, The Analytical Scientist Innovation Awards showcase the technologies driving progress in measurement science and one o...
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.