Computer chips are currently built by stacking layers of varied materials and engraving patterns into them.
There are many different ways to make nanomaterials but weaving, the oldest and most enduring method of making fabrics, has not been one of them – until now. An international collaboration led by scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, has woven the first three-dimensional covalent organic frameworks (COFs) from helical organic threads.
The W.M. Keck Foundation has awarded a $1 million grant to Lehigh to study and discover the mechanisms that govern anti-thermal processes that appear to reverse nature.
Although compressed natural gas represents a cleaner and more efficient fuel for vehicles, its volatile nature requires a reinforced, heavy tank that stores the gas at high pressure and therefore limits vehicle design. Researchers at the University of Pittsburgh’s Swanson School of Engineering are utilizing metal-organic frameworks (MOFs) to develop a new type of storage system that would adsorb the gas like a sponge and allow for more energy-efficient storage and use.
In a joint study, scientists from the MIPT (Moscow Institute of Physics and Technology), ICP (Institute of Chemical Physics) named after Semenov, MSU (Moscow State University) and IPCP (Institute of Problems of Chemical Physics) have developed a mechanism of laser deposition of patterns on glass with a resolution of 1000 times lower than the wideth of a human hair. Focusing the laser was conducted with the help of small glass spheres, playing the role of the lens. This mechanism allows inexpensively and relatively easy to apply complex patterns to a glass surface, whereby obtaining a spatial resolution of less than 100 nanometers.
Similar to magic tricks seen in the movies, materials possessing properties known as phase transition can change from clear to cloudy when applied to an electric field or according to the temperature. A collaborative team of researchers, including physicists from Germany’s Friedrich Schiller University Jena, have created a method to engineer the transition point at specific temperatures for vanadium dioxide, a phase-transition material.
Chemical engineers from the University of Michigan have developed a stretchable, thin film that could help to provide improved follow-up treatment for cancer survivors.
A team of researchers from Penn State have developed a new and unique technique that enables the detection of single molecules of biological and chemical species from solid, liquid and gaseous samples, based on the ultra sensitivity of the surface-enhanced Raman scattering (SERS) with a slippery surface invented by Penn State. The researchers believe that the new technology would pave the way for various applications in the field of analytical chemistry, molecular diagnostics, environmental monitoring and national security.
A team of investigators led by Dreamweaver International has investigated the effects of heat and nail penetration on lithium ion cells by performing autopsies on cells post-test. The investigators found that conventional separators shrink, melt, crack, split and burn under extreme conditions, while separators made of more thermally stable materials show much less damage, and in some cases none of these effects.
A new alloy with cold-loving features is reported to be one of the toughest metallic alloys ever, according to a team of Berkeley Lab researchers.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.