Posted in | News | Crystallography

Researchers Develop Porous Complex Crystal Acting as Reaction Vessel

Japanese researchers from the University of Tokyo have made a complex that crystallizes as a porous solid. Common reagents, even bulky ones, can easily diffuse into these pores and are sufficiently mobile to react with embedded substrates.

As they report in the journal Angewandte Chemie, the pores act as a sort of crystalline molecular test tube. The reaction products can then be directly examined by X-ray crystallographic methods.

Only single crystals can be examined by X-ray crystallography. The crystal’s diffraction of X-rays can be used to determine its structure. Liquids are not so easy to analyze. In solid-state reactions, this technique is limited to cases in which the structural changes are very small. Bulky reactants cannot even get into an ordinary tightly packed crystal, and crystals often decompose in the course of the reaction.

A team led by Makoto Fujita has developed a complex of zinc ions and aromatic ring systems that crystallizes into a robust network with large pores. The compound is constructed so that reactive groups of atoms, such as amino groups, protrude into the pores. Dipping the crystals into a solution containing common reactants brings these into contact with the embedded reaction partners. Even bulky molecules can get into the large pores. The researchers were thus able to react the amino groups with acetic anhydride or aniline. The reactivity of the reagents used and the course of the reaction are no different than if the reactants encountered each other freely in solution. The crystal changed color little by little, but remained intact in crystalline form despite the reaction.

Because the final product of the reaction is still in the form of a single crystal, the course of the reaction can be followed by X-ray crystallographic methods. Labile reaction products and intermediates can thus be produced and detected in situ. The chemical reactions within the pores can also be used to modify the walls of the pores as needed. For example, they can be equipped with free acid groups.

For more information on crystals, click here.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.