QuantumSpehere to Develop Nanocatalysts to Convert Biomass into Biofuel

QuantumSphere, Inc., a leading developer of advanced catalyst materials, high-performance electrode systems, and related process chemistries for portable power and clean-tech applications, today announced that it was awarded a research grant from the California Energy Commission to develop a process using nanocatalysts to convert biomass into biofuels.

The grant was awarded under the commission's Energy Innovations Small Grant program (EISG) and will fund the one-year development of an algae biogasification process that utilizes nanometals as catalysts for the purposes of turning vegetation and similar biomass materials into methane, hydrogen, or other synthetic gases that can be used for transportation and other energy needs. QuantumSphere will build a small-scale platform over the next 12 months to demonstrate the effectiveness of the process.

Algae-based bio fuels hold great promise due to their enormous energy potential. According to experts, algae grows 20 to 30 times faster than food crops, contains up to 30 times more fuel than equivalent amounts of other bio fuel sources, and can be grown almost anywhere. Studies show that algae can produce up to 60% of its biomass in the form of oil or carbohydrates. This oil can then be turned into biodiesel which could be sold for use in automobiles. The carbohydrates can be turned into alcohols, or gasified to bio gas, hydrogen, or methane, for many industrial applications.

"Our vision for this project was to use this process to take wet algae produced in a place like the Salton Sea in the Imperial Valley of California and convert it into renewable fuels," said Subra Iyer, principal technologist for QuantumSphere, Inc. "The Salton Sea is a place for large amounts of agricultural runoff which sometimes creates large algae blooms. If successful, we envision a large plant on the shore of the Salton Sea that could convert large amounts of wet algae into renewable fuels."

The feasibility of the proposal is based on research the company has conducted using nanometals as catalysts. Iyer said the process is designed to convert any biomass, such as leaves, algae, vegetable waste, or corn stalks, into fuel.

The EISG provides funding for hardware projects to small businesses, nonprofits, individuals, and academic institutions to conduct research that establishes the feasibility of new and innovative energy concepts. Research projects must target one of the Public Interest Energy Research (PIER) areas, address a California energy problem, and provide a potential benefit to California electric and natural gas consumers.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.