Carbon Nanotubes Enable Quantum Computing

The computing community for many years has longed to be able to carry out high speed calculations using a genuine Quantum Computer because it would facilitate the practical factorisation of very large numbers and the searching of unordered lists and databases. The rapid breaking of secure codes based on prime numbers would have a lot of practical applications particularly in the banking and military field and would necessitate the development of new cryptographic and security methods to protect valuable data.

Academics working in the Department of Material Science at the University of Oxford have successfully developed a design protocol for inserting filled molecules of Buckminsterfullerene (“Buckyballs”) into carbon, and other types of nanotube. The Buckyballs are themselves filled with molecules that have either an electronic or structural property which can be used to represent the quantum bit (Qubit) of information, and which can be associated with other adjacent Qubits. The improved stability of the system now allows several thousand operations to be executed before quantum interference occurs (“decoherence”). Intensive collaborative work is continuing in order to develop the protocol into a working computer.

For more information on carbon nanotubes, click here.

Source:

Alphagalileo

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.