Using Granite Waste to Produce Ceramic Tiles

In an article recently published in the journal Cleaner Materials, researchers discussed the utility of vaporized granite waste powder as a secondary flux material for the long-term manufacturing of ceramic tiles.

Study: Valorization of granite waste powder as a secondary flux material for sustainable production of ceramic tiles. Image Credit: DUO Studio/Shutterstock.com

Background

Ceramic tiles have emerged as one of the most extensively used decorative materials and construction materials. As a result, the demand for ceramic tiles for construction has risen dramatically in recent years and is expected to continue to rise in the future. Ceramic tiles have also been the material of choice for architectural applications.

On the other hand, the rapid expansion of the ceramic industry has resulted in a massive intake of clay raw materials, resulting in overuse and, eventually, negative environmental consequences. As a result, recycling and repurposing industrial by-products into useful resources is critical in a circular economy. One of the most common industrial by-products created by the construction industry is granite waste. Regardless of its unique chemical qualities, granite debris is routinely wasted in large quantities without being used, posing a risk to the environment.

Due to the presence of important fluxing chemicals, granite powder could be considered a suitable alternative flux material. There has been a lot of use of granite waste in the production of high-performance concrete (HCP). On the contrary, there are sparse reports on the utilization of granite powder in ceramic tile manufacturing. Granite debris can be used as a feedstock for ceramic tile manufacture since it contains a significant number of fluxing agents and alumina silicates.

XRD patterns of a) Kaolin b) Granite powder c) Quartz.

XRD patterns of a) Kaolin b) Granite powder c) Quartz. Image Credit: Ngayakamo, B et al., Cleaner Materials

About the Study

In this study, the authors proposed a viable method for the recovering and utilization of granite waste as a secondary flux in the production of ceramic tiles. To make a fine powder, the granite waste was crushed and pulverized. Different batch compositions with varying proportions of granite powder were made and burned at different sintering temperatures, i.e., 1100, 1150, and 1200 °C. Chemical compositions, mineralogical, microstructural, and physical-mechanical properties of ceramic bodies and raw materials were studied.

The team investigated the impact of altering batch compositions and sintering temperature on the mechanical strength and physical characteristics of ceramic tiles. X-ray fluorescence was used to determine the chemical makeup of the raw components (XRF). The microstructural characterization of ceramic samples and raw materials was done using scanning electron microscopy (SEM). X-ray diffraction (XRD) was used to determine the mineralogical compositions of ceramic samples and raw materials. The green bodies were made by changing the amounts of granite and kaolin while maintaining a consistent quartz concentration.

The researchers demonstrated the ideal batch compositions for achieving the best physical-mechanical properties of ceramic tiles by varying the quantity of granite powder and sintering temperature. The physical parameters, such as apparent porosity, water absorption, and bulk density, were characterized using ASTM 373–88 standard procedures. The standard method was used to conduct the compressive strength and bending tests, which followed ASTM C67 criteria. Three-point testing was used to determine bending strength.

SEM micrographs of ceramic samples with a) 30 wt% of GP b) 35 wt% of GP c) 40 wt% of GP and d) 45 wt% of GP fired 1200 °C showing glass (G) and mullite (M) phase.

SEM micrographs of ceramic samples with a) 30 wt% of GP b) 35 wt% of GP c) 40 wt% of GP and d) 45 wt% of GP fired 1200 °C showing glass (G) and mullite (M) phase. Image Credit: Ngayakamo, B et al., Cleaner Materials

Observations

The B3 ceramic sample at 1200 °C had a maximum bending strength of 36.1 MPa and compressive strength of 30.6 MPa. At 1100, 1150, and 1200 °C, batch compositions B2 and B3, which comprised 35 and 40 wt% granite powder, had the lowest values of water absorption and apparent porosity compared to batches B1 and B4.

Fluxing agents diffused into the decomposing clay and reacted to generate mullite crystals when the firing temperature was above 1130 °C. According to the XRF study, all the raw materials had a large proportion of silica (SiO2), followed by alumina (Al2O3) in kaolin and granite powder. Fluxing agents were found in both raw materials in concentrations ranging from 0.3 to 4.74%, while granite powder had the highest concentration.

The findings revealed that altering batch compositions and sintering temperature improved the mechanical strength and physical attributes of ceramic tiles. At a firing temperature of 1200 °C, the batch composition (B3) of 50% kaolin, 40% granite powder, and 10% quartz satisfied the minimal specifications required by ISO13006 for the production of ceramic tiles.

Compressive strength of ceramic samples fired at 1100–1200 °C.

Compressive strength of ceramic samples fired at 1100–1200 °C. Image Credit: Ngayakamo, B et al., Cleaner Materials

Conclusions

In conclusion, this study elucidated the possibility of using granite waste powder as a secondary flux material for long-term ceramic tile manufacture. The batch compositions and firing temperature had a substantial impact on the ceramic samples' physical-mechanical properties.

The authors emphasized that the use of granite waste powder as a secondary flux material in the industrial manufacture of ceramic tiles is a viable and long-term option for reducing granite waste output. They also believe that the use of granite waste as a value-added flux material will speed up the production of ceramic tiles that are both cost-effective and environmentally beneficial while reducing the massive amount of granite waste generated by the building industry.

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Source:

Ngayakamo, B., Bello, A., Onwualu, A.P., Valorization of granite waste powder as a secondary flux material for sustainable production of ceramic tiles. Cleaner Materials 4 100055 (2022). https://www.sciencedirect.com/science/article/pii/S2772397622000156

Surbhi Jain

Written by

Surbhi Jain

Surbhi Jain is a freelance Technical writer based in Delhi, India. She holds a Ph.D. in Physics from the University of Delhi and has participated in several scientific, cultural, and sports events. Her academic background is in Material Science research with a specialization in the development of optical devices and sensors. She has extensive experience in content writing, editing, experimental data analysis, and project management and has published 7 research papers in Scopus-indexed journals and filed 2 Indian patents based on her research work. She is passionate about reading, writing, research, and technology, and enjoys cooking, acting, gardening, and sports.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Jain, Surbhi. (2022, March 23). Using Granite Waste to Produce Ceramic Tiles. AZoM. Retrieved on November 22, 2024 from https://www.azom.com/news.aspx?newsID=58609.

  • MLA

    Jain, Surbhi. "Using Granite Waste to Produce Ceramic Tiles". AZoM. 22 November 2024. <https://www.azom.com/news.aspx?newsID=58609>.

  • Chicago

    Jain, Surbhi. "Using Granite Waste to Produce Ceramic Tiles". AZoM. https://www.azom.com/news.aspx?newsID=58609. (accessed November 22, 2024).

  • Harvard

    Jain, Surbhi. 2022. Using Granite Waste to Produce Ceramic Tiles. AZoM, viewed 22 November 2024, https://www.azom.com/news.aspx?newsID=58609.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.