What are the Properties of Copper-Doped Titanium Bone Implants?

In a review recently published in the open-access journal Materials, researchers discussed the recent advances in copper-doped titanium implants.

Study: Recent Advances in Copper-Doped Titanium Implants. Image Credit: Monstar Studio/Shutterstock.com

Background

Because of their superior mechanical qualities, excellent corrosion resistance, and ideal biocompatibility, titanium (Ti) and its alloys have been widely employed in human implants. However, due to Ti and its alloys' low intrinsic osteogenic potential, bone repair and regeneration are hampered, and implant-related infection or inflammation remains the predominant cause of implant failure.

Infections caused by bacteria or inflammatory illnesses pose a serious hazard to human health. As a result, limiting bacterial invasion is critical for implantation success, and increasing the antimicrobial characteristics of implant materials is a top priority.

Cu has been widely employed in biomedical materials to boost their antibacterial ability. Many studies have demonstrated that Cu-doped Ti implants are resistant to bacterial adhesion and biofilm formation.

About the Study

In this study, the authors examined current developments in the design and preparation of Ti alloy and Cu-doped Ti implants, with an emphasis on a variety of techniques such as magnetron sputtering, plasma immersion implantation, micro-arc oxidation (MAO), galvanic deposition, and sol-gel synthesis. The mechanical and antibacterial properties of Cu-doped Ti implants, as well as their biocompatibility and corrosion resistance, were evaluated, and their limitations and prospects were also discussed.

The team presented a timely review of current advancements in Cu-doped Ti implants, wherein their preparation technique and bone-enabling characteristics were investigated. The osseointegration process and bacterial infection of medical implants were discussed. Recent breakthroughs in the use of Cu dopants to modify the surface of Ti-based medical implants were summarized.

The authors also illustrated the effect of Cu dopants on the characteristics of Cu-doped Ti implants.

Observations

Several studies reported that the modification of titanium and titanium-based implants for the prevention of prosthetic infections was a difficult task. Bacterial colonization could be prevented by using Cu as an antibacterial agent directly grafted onto the implant surface.

Titanium alloy was utilized in many clinical applications due to its excellent corrosion resistance and strength. The use of ion implantation technology significantly improved the surface wear resistance of the material. MAO technology had the advantage of being easy and quick to process; nevertheless, because of its high energy consumption, it had significant commercialization costs.

More from AZoM: What Do We Know About MXene Epoxy Resin?

The coating thickness could be controlled by modifying the process parameters, and co-sputtering of multiple metals could be achieved. It was observed in many studies that although sol-gel technologies were simple to use at the molecular level, they were rather time-consuming and costly. The bactericidal rate of Staphylococcus aureus was found to be 92% when Cu2+ had a concentration of 5 x 10-5 M, but the bactericidal rate of E. coli was 93% when Cu2+ had a concentration value of 5 x 10-6 M. Antibacterial activity had a substantially lower effective concentration than cytotoxicity. On human gingival fibroblasts, the median lethal dose of Cu ions was found to be 21.86 mg L-1. MC3T3 cells were cytotoxic when the concentration of Cu ion was more than 9 mg/L.

Many studies demonstrated that even when the concentration of Cu ions emitted was very low, Cu-doped Ti-based implants had antibacterial properties. Cu ions were released from the antibacterial Ti6Al4V-5Cu alloy at a rate of 2.498 ± 0.755 g/L after 20 days in a 0.9% NaCl solution. Cu-containing particles had the ability to prevent bacterial adherence and biofilm formation. It was demonstrated that Ti-Cu alloys could promote osteogenic differentiation in MG-63 cells by enhancing the expression of osteogenic-related genes like Collagen I, ALP, OCN, and OPN.

Conclusions

In conclusion, this review elucidated that because of their strong antibacterial and bone-enabling qualities, as well as their good corrosion resistance and mechanical properties, Cu-doped Ti-based implants have a lot of potential for future uses.

It was observed that no Ti-based implants having Cu components are currently accessible on the medical device market. Also, for dental and orthopedic implants, the issue of prosthesis infection was found to be a major concern. The authors proposed to combine various antibacterial elements with contributing bone components such as Cu2+, Ag+, Sr2+, and Zn2+. They emphasized that the development of new metal surfaces that could improve and increase tissue integration while also providing long-lasting antibacterial benefits should be a focus of future biomaterials research.

They also observed that the impact of loading Cu on the implant surface in various ways on cellular/tissue response and antimicrobial activity has yet to be determined.

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Source:

Wu, Y., Zhou, H., Zeng, Y., et al. Recent Advances in Copper-Doped Titanium Implants. Materials 15(7) 2342 (2022). https://www.mdpi.com/1996-1944/15/7/2342

Surbhi Jain

Written by

Surbhi Jain

Surbhi Jain is a freelance Technical writer based in Delhi, India. She holds a Ph.D. in Physics from the University of Delhi and has participated in several scientific, cultural, and sports events. Her academic background is in Material Science research with a specialization in the development of optical devices and sensors. She has extensive experience in content writing, editing, experimental data analysis, and project management and has published 7 research papers in Scopus-indexed journals and filed 2 Indian patents based on her research work. She is passionate about reading, writing, research, and technology, and enjoys cooking, acting, gardening, and sports.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Jain, Surbhi. (2022, March 24). What are the Properties of Copper-Doped Titanium Bone Implants?. AZoM. Retrieved on November 22, 2024 from https://www.azom.com/news.aspx?newsID=58622.

  • MLA

    Jain, Surbhi. "What are the Properties of Copper-Doped Titanium Bone Implants?". AZoM. 22 November 2024. <https://www.azom.com/news.aspx?newsID=58622>.

  • Chicago

    Jain, Surbhi. "What are the Properties of Copper-Doped Titanium Bone Implants?". AZoM. https://www.azom.com/news.aspx?newsID=58622. (accessed November 22, 2024).

  • Harvard

    Jain, Surbhi. 2022. What are the Properties of Copper-Doped Titanium Bone Implants?. AZoM, viewed 22 November 2024, https://www.azom.com/news.aspx?newsID=58622.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.