Novel Light-Manipulating Technology Confines Near-Infrared Light Within Nanodisks

A novel light-manipulating technology has been developed by an international team, including Kyoto University, that can be applied to lasers, sensors, and nonlinear optics.

The technique tightly confines near-infrared light within a nanodisk periodic structure. By breaking the symmetry of the periodic square lattice of silicon nanodisks, the team has demonstrated experimentally and computationally their ability to systematically control bound states in the continuum, or BICs.

These light distribution states result from global cancellation of light escaping by destructive interference of scattering waves from silicon nanodisks.

"In this study, starting from a periodic square lattice of a silicon nanodisk -- a Bravais lattice -- three types of non-Bravais lattices were made by varying the position of a second lattice point in the unit lattice and the size of the disc," explains lead author Shunsuke Murai.

In Bravais lattices, used in crystallography to help us understand and classify crystal structures, all the lattice points were equivalent, meaning all those points could be superimposed by the unit cell.

Non-Bravais lattices were created by introducing a second non-equivalent lattice point. These samples were produced using electron-beam lithography and dry etching.

"We applied phototonic, or photosensitive, non-Bravais lattices consisting of silicon nanodisks to control near-infrared light," the author adds.

However, by selecting the appropriate period of these lattices and the material of the nanodisks, not limited to silicon, BIC control may be possible over a wide frequency range from UV to millimeter waves.

Murai concludes, "The robustness of BIC control over the imperfections in fabricating these lattices was a bonus and an encouraging surprise, given that manufacturing flaws are inevitable."

The paper "Engineering bound states in the continuum at telecom wavelengths with non-Bravais lattices" appeared on 26 August 2022 in Laser & Photonics Reviews, with doi: 10.1002/lpor.202100661

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.