Posted in | News | Business | Events

Oita University and Hitachi High-Tech Give a Joint Presentation on the Use of AI Technology to Extend the Lifespan of Polymer Electrolyte Fuel Cells

National University Corporation OITA UNIVERSITY ("Oita University") and Hitachi High-Tech Corporation ("Hitachi High-Tech") today announced that we have started conducting research ("this research") into predicting and extending the life of electrocatalysts used in polymer electrolyte fuel cells (PEFC), utilizing Hitachi High-Tech’s technology that uses AI to perform image analysis. We will be giving a joint presentation on the contents of this research at The Chemical Society of Japan Autumn Event 14th CSJ Chemistry Festa 2024, which will be held at Tower Hall, Funabori (Tokyo) from October 22 to 25, 2024.

Kinumoto Laboratory at the Faculty of Science and Technology of Oita University is involved in research initiatives using the Identical Location Field Emission-Scanning Electron Microscope (IL-FE-SEM) of Oita university's proprietary technology to figure out the degradation mechanism of PEFC electrocatalysts and develop robust PEFC.This research is part of the Green Technologies for Excellence (GteX) project of the Japan Science and Technology Agency (JST).

Hitachi High-Tech develops, manufactures, and sells electron microscopes, so has a wealth of expertise in the analysis of observation images, also solves problems faced by customers using informatics technologies, Materials Informatics (MI) and Process Informatics (PI). Hitachi High-Tech has drawn on these strengths and combined them with AI and SEM image analysis technologies to provide support for Oita University’s PEFC research and development.

Including with this research, Oita University and Hitachi High-Tech aim to continue working to accelerate efforts to develop longer-lasting PEFC going forward and contribute to solving social issues such as by achieving carbon neutrality and a decarbonized society.

Background

PEFC are a type of fuel cell that use polymer materials as the electrolyte to generate electricity (energy) by causing chemical reactions between hydrogen and oxygen at two electrodes. Fuel cells of all kinds are increasingly used as a form of sustainable energy that can reduce CO2 emissions and, among those, PEFC are also used in everyday applications such as vehicle and household power sources. As the achievement of carbon neutrality becomes recognized as a key issue facing society, it is predicted that PEFC will become increasingly necessary. To that end, however, PEFC in their current state need to be higher durability, with higher output, and lower in cost. This research aims to shed light on the mechanism behind the degradation of electrocatalysts, which is the utmost important issue in prolonging PEFC life, by using AI technology to analyze FE-SEM observation images and make more efficient analysis based on quantitative data possible.

Overview of this Research

This research used Oita University's IL-FE-SEM technology and Hitachi High-Tech's AI- powered image analysistechnology to study electrocatalyst durability and surface degradation through accelerated degradation tests in which a pulse voltage is repeatedly applied to the PEFC electrocatalysts.

In order to figure out the deterioration mechanism, in which there is a reduction in the electrochemical surface area (ECSA) of the electrocatalytic platinum particles, Oita University is using IL-FE-SEM technology to visually inspectand analyze the platinum particles in observation images. However, although it is possible to use IL-FE-SEM technology to acquire a large volume of observation images, this has its problems in that there is a tremendous workload involved in analyzing all of the observation images due to there being hundreds of platinum particles present in each individual image. To resolve this problem, Hitachi High-Tech provided AI-driven image analysis technology to streamline the task of image analysis. Specifically, AI image analysis was used to detect platinum particles present in each test. After the particles were detected in the images that had been taken, changes in the status of the particles (their disappearance, aggregation, or formation) could be tracked and the particle count automatically determined.

Going forward, the researchers will continue to work to improve particle detection accuracy and make advancements in figuring out the degradation mechanism of more efficient PEFC, as both Oita University and Hitachi High Tech will push ahead and continue to work together to develop long-lasting PEFC. They will also contribute to the cultivation ofdata scientists with a grounding in chemistry by working together with the students of Oita University on pushing this analysis forward.

This research is being performed through technical collaboration with Hitachi Co., Ltd. (“Hitachi”), and the presentation at CSJ Chemistry Festa 2024 is planned to be performed jointly by Oita University, Hitachi High-Tech, and Hitachi.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.