Green Catalysts Help Reduce and Clean Up Pollutants

Tetra-Amido Macrocyclic Ligands (TAMLs) are environmentally friendly catalysts with a host of applications for reducing and cleaning up pollutants, and a prime example of "green chemistry."

Research programs are evolving around the scientific and technological development of TAML hydrogen peroxide activators

Carnegie Mellon University's Terry Collins, the catalyst's inventor, believes that the small-molecule catalysts have the potential to be even more effective than previously proven. Collins will discuss how iron-TAMLs (Fe-TAMLs) work and areas for further research, citing evidence from mechanistic and kinetic studies of the catalyst on Monday, Aug. 18 at the 236th national meeting of the American Chemical Society in Philadelphia.

The oxidation catalysts are the first highly effective mimics of peroxidase enzymes. When partnered with hydrogen peroxide, they are able to convert harmful pollutants into less toxic substances. Made from the common elements of biochemistry, carbon, hydrogen, nitrogen and oxygen around a reactive iron core, Fe-TAMLs are less toxic and usable at extremely low concentrations. Additionally, their composition also results in very strong chemical bonds that are not broken down by the highly reactive oxygen intermediaries formed during the reaction with hydrogen peroxide.

"Our recent studies into what occurs during the chemical reaction caused by TAMLs proves that the catalysts are indeed really close mimics of peroxidase enzymes," said Collins, the Thomas Lord Professor of Chemistry and director of the Center for Green Science at Carnegie Mellon. "By knowing the mechanics of the reactions, we can fine tune the catalysts for even better performance."

Research by the Collins group at Carnegie Mellon has shown that Fe-TAMLs have enormous potential to provide clean and safe alternatives to existing industrial practices and provide ways to remediate other pressing environmental problems that currently lack solutions. The catalysts have proven effective in degrading estrogenic compounds, cleaning waste water from textile manufacturing, reducing fuel pollutants, treating pulp and paper processing byproducts and decontaminating a benign simulant of anthrax.
 

For more information on catalyst, click here.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.