Posted in | News | Chemistry | 3D Printing

Ball-Milling Experiments Make Use of 3D-Printed Jars

Mechanochemistry is a well-known synthesis technique used in all areas of chemistry. This technique has been used to synthesize different materials when the standard wet chemistry route is not satisfactory. However, characterization of the reaction mixture is much less accessible than in solutions.

This image shows a thin-walled jar with a groove; isometric view with a cut (left) and cross section (right). CREDIT Tumanov et al

In situ observations of mechanochemical reactions were recently achieved by Raman spectroscopy and X-ray diffraction. It is possible to directly track solid-state reactions, revealing phase transitions and various other material transformations during synthesis in a ball mill jar. This technique has become increasingly popular in different fields of mechanochemistry.

The fraction patterns present a high background because of the scattering from the thick walls of the jar as the X-rays go via the entire jar. Broad diffraction peaks are expected from the sample due to probing of a large sample area covering the whole jar. An extra complexity is obtained from diffraction on the milling balls.

Tumanov et al. explained that these issues can be solved by altering the material and geometry of the milling jar. However, making a jar with a complex geometry using standard production techniques is considered to be difficult, particularly at the stage of developing a prototype, when bringing about changes into a design should be easy. For this reason, they used a 3D printer for the purpose. They demonstrated how this useful production tool can rapidly make milling jars optimized for enhanced absorption, background and angular resolution in X-ray powder diffraction experiments. Additionally, the jars are considered to be more resistant to solvents compared with traditional acrylic jars. 3D printing allows for cost-effective fast production on demand.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.