When small particles flow through thin capillaries, they display an unusual orientation behaviour. This has been discovered by a research team led by Prof. Stephan Förster and Prof. Walter Zimmermann (University of Bayreuth, Germany) at the X-ray sources DORIS III and PETRA III of the research centre DESY in Hamburg, Germany.
It sounds futuristic, but today Carnegie Mellon University researchers are developing edible electronic devices that can be implanted in the body to improve patient care.
The craft of glassmaking extends way back in time. It was over five-thousand years ago when mankind learned how to make glass. Even prior to this discovery, humans had been using naturally occurring glass for tool making.
Imagine a tent that blocks light on a dry and sunny day, and becomes transparent and water-repellent on a dim, rainy day. Or highly precise, self-adjusting contact lenses that also clean themselves. Or pipelines that can optimize the rate of flow depending on the volume of fluid coming through them and the environmental conditions outside.
Advances in tattoo sensors for health monitoring, on-chip optical networking, low-cost cancer diagnostics, video games designed to teach computer programming, new materials for protecting soldiers from blasts, and energy-efficient high-wire robots. These are just a few of the 200+ projects from Jacobs School of Engineering graduate students that will be on display at Research Expo on April 18 at the University of California, San Diego.
Chemical Engineering Professor Tim Bender and Post-Doctoral Fellow Benoit Lessard's discovery of an unexpected side product of polymer synthesis could have implications for the manufacture of commercial polymers used in sealants, adhesives, toys and even medical implants, the researchers say.
At least nine Nobel laureates have research that will be presented here this week during the 245th National Meeting & Exposition of the American Chemical Society, the world's largest scientific society. Research from the laureates' teams will be among almost 12,000 presentations during the event, expected to attract more than 14,000 scientists and others.
Xradia, Inc. announced today that several of its customers have used VersaXRM 3D X-ray microscopes to achieve ground-breaking research results not previously possible in their labs. The VersaXRM family has introduced unprecedented resolution for 3D non-destructive imaging at high contrast into laboratory environments, enabling synchrotron-quality research for a broad range of applications. [See related announcement: "Xradia Expands VersaXRM Family"]
A research team led by Professor Makoto Fujita of the University of Tokyo, Japan, and complemented by Academy Professor Kari Rissanen of the University of Jyväskylä, Finland, has made a fundamental breakthrough in single-crystal X-ray analysis, the most powerful method for molecular structure determination. The team's breakthrough was reported in Nature on 28 March 2013 (published online 27 March 2013).
Chemical Engineering Professor Tim Bender and Post-Doctoral Fellow Benoit Lessard's discovery of an unexpected side product of polymer synthesis could have implications for the manufacture of commercial polymers used in sealants, adhesives, toys and even medical implants, the researchers say.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.