Scientists in China and Sweden have determined that a pinch of capsaicin, the chemical compound that gives chili peppers their spicy sting, may be a secret ingredient for more stable and efficient perovskite solar cells.
Dinitrogen (N2) fixation is considered as one of the most essential tasks in basic science, providing straightforward methods to produce ammonia and nitrogen-containing molecules.
Advancements in energy technologies, healthcare, semiconductors and food production all have one thing in common: they rely on developing new materials--new combinations of atoms--that have specific properties enabling them to perform a needed function. In the not-too-distant past, the only way to know what properties a material had was by performing experimental measurements or using very expensive computations.
Organic luminescent materials have been highlighted as an exciting research topic owing to their prominent potentials in light-emitting diodes, fluorescent sensors, optoelectronic devices, in vivo imaging, anti-counterfeiting, data storage, and information encryption.
Superconductivity already has a variety of practical applications, such as medical imaging and levitating transportation like the ever-popular maglev systems. However, to ensure that the benefits of applied superconductors keep spreading further into other technological fields, we need to find ways of not only improving their performance, but also making them more accessible and simpler to fabricate.
At the U.S. Department of Energy’s Ames Laboratory, computational materials science experts optimize an algorithm that is based on the nesting habits of cuckoo birds, thereby decreasing the search time for new high-tech alloys from weeks to just seconds.
College Station, TX – ALLVAR, a manufacturer of revolutionary alloys that exhibit negative thermal expansion (NTE), has announced a series of educational videos, called ALLVAR University, that showcase a particular application, calculation or considerations when designing assemblies with a component manufactured from an ALLVAR alloy.
A new structural arrangement of atoms shows promise for developing safer batteries made with solid materials. Scientists at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) designed a new type of 'antiperovskite' that could help efforts to replace the flammable organic electrolytes currently used in lithium ion batteries. Their findings were described in the journal Nature Communications.
To resolve the energy crisis and environmental issues, research to move away from fossil fuels and convert to eco-friendly and sustainable hydrogen energy is well underway around the world. Recently, a team of researchers at POSTECH has proposed a way to efficiently produce hydrogen fuel via water-electrolysis using inexpensive and readily available nickel as an electrocatalyst, greenlighting the era of hydrogen economy.
A team led by University of Minnesota Twin Cities researchers has discovered a groundbreaking one-step process for creating materials with unique properties, called metamaterials.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.