Imagine you're a water molecule in a glass of ice water, and you're floating right on the boundary of the ice and the water," proposes Emory University physicist Eric Weeks. "So how do you know if you're a solid or a liquid?
An experimental atomic clock based on ytterbium atoms is about four times more accurate than it was several years ago, giving it a precision comparable to that of the NIST-F1 cesium fountain clock, the nation’s civilian time standard, scientists at the National Institute of Standards and Technology (NIST) report in Physical Review Letters.
Nanometrics Incorporated (Nasdaq: NANO), a leading supplier of advanced process control metrology systems used primarily in the manufacturing of semiconductors, solar photovoltaics and high-brightness LEDs as well as adv...
The Casimir force, also known as the Casimir effect, is typified by the small attractive force that acts between two close parallel uncharged conducting plates. Today, this force has become an interdisciplinary subject of study, playing an important role in condensed matter physics, quantum field theory, atomic and molecular physics, gravitation and cosmology, and mathematical physics.
Linde Gases, a division of The Linde Group, today announced the publication of its authoritative text to specialty gases. The uniqueness of the offering lies in the fact that the hardback book not only covers the technic...
U.S Department of Energy Secretary Steven Chu announced today that more than $327 million in new funding from the American Recovery and Reinvestment Act will go toward scientific research, instrumentation, and laboratory...
The U.S. Department of Energy's (DOE) Argonne National Laboratory will open its gates to the community on Saturday, August 29, from 9:00 a.m. to 4:30 p.m. for a day of discovery and fun for the whole family. The event is free and open to the public.
Hydrogen, the most common element in the universe, is normally an insulating gas, but at high pressures it may turn into a superconductor. Now, scientists at the Carnegie Institution in Washington D.C., US, have discovered a hydrogen-based compound that could be helpful in the search for metallic and superconducting forms of hydrogen.
Now, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Stony Brook University have devised a way to encapsulate bacteria in a synthetic polymer hydrogel. These new, stable, bio-hybrid materials maintain the microbes' ability to exchange nutrients and metabolic products with their environment, and could find widespread applications, for example, as biosensors, catalysts, drug-delivery systems, or in wastewater treatment.
Flasks, beakers and hot plates may soon be a thing of the past in chemistry labs. Instead of handling a few experiments on a bench top, scientists may simply pop a microchip into a computer and instantly run thousands of chemical reactions, with results - literally shrinking the lab down to the size of a thumbnail.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.