Materials Developments at Sandia Earn R+D100 Awards

Sandia National Laboratories researchers - competing in an international pool that includes universities, start-ups, large corporations, and government labs - received five R+D 100 Awards this year.

R+D Magazine presents the awards each year to researchers who have developed the year's 100 most outstanding advances in applied technologies.

Sometimes referred to as "the Nobel Prizes of technology," the R+D 100 awards were first presented in 1963 as the I-R 100s, in keeping with the original name of the magazine, Industrial Research.

The sole criterion for winning, according to a description released by the magazine, is "demonstrable technological significance compared with competing products and technologies." Properties noted by judges include smaller size, faster speed, greater efficiency and higher environmental consciousness.

Many entries over the ensuing years became household names, including Polacolor film (1963), the flashcube (1965), the automated teller machine (1973), the halogen lamp (1974), the fax machine (1975), the liquid crystal display (1980), the printer (1986), the Kodak Photo CD (1991), the Nicoderm antismoking patch (1992), Taxol anticancer drug (1993), lab on a chip (1996) and HDTV (1998).

"The Department of Energy's national laboratories are incubators of innovation, and I'm proud they are being recognized once again for their remarkable work," said Energy Secretary Steven Chu. "The cutting-edge research and development being done in our national labs is vital to maintaining America's competitive edge, increasing our nation's energy security and protecting our environment. I want to thank this year's winners for their work and congratulate them on this award."

Team members will receive their awards at R+D Magazine's formal awards banquet on Nov. 12, 2009, at the Renaissance Orlando Hotel at SeaWorld in Florida.

The five Sandia award winners were:

  • High-temperature silicon carbide power module. It more efficiently converts electrical energy from one form to another. This invention reduces the size and volume of power electronic systems by an order of magnitude over present state-of-the-art silicon-based solutions while simultaneously reducing energy loss by greater than 50 percent, offering the potential for users to save hundreds of millions of dollars. Applications are in hybrid and electric vehicles, renewable energy interfaces and aircraft.
  • Ultra-low-power silicon microphotonic communications platform. An ultra-low-power microphotonic communications platform, made of silicon, for wavelength division multiplexed communications within high performance computers. The ultrasmall components establish a platform of elements capable of addressing the bandwidth and power consumption problems of high-performance computer and data communications networks. Silicon resonant modulators demonstrate for the first time 100-microwatts/gigabit/second optical data transmission on a silicon CMOS-compatible platform. Together with the first high-speed silicon bandpass switches, the platform enables optical data transmission and routing on a silicon platform at nanosecond switching speeds with up to 100-times less power consumption and 100 times the bandwidth density compared to traditional electronic approaches.
  • Catamount N-Way (CNW) lightweight kernel. It leverages hardware capabilities of multicore processors to deliver significant improvements in data access performance for today's parallel computing applications. CNW provides enhanced data access capabilities beyond other equivalent operating systems by employing a new technique that targets memory bandwidth, arguably the most important area of performance in scientific parallel computing. The CNW software is licensed to Cray, Inc., at a non-disclosed price.
  • NanoCoral dendritic platinum nanostructures. This innovative nanotechnology for producing platinum catalysts offers unique control over the shape, size, porosity, composition, stability and other functional properties of platinum nanostructures compared with those achieved by existing methodologies. Novel catalysts and electrocatalysts produced by the Sandia approach are expected to significantly reduce platinum metal usage and thus the cost of platinum catalysts in fuel cells, solar cells and other applications in the renewable energy sector.
  • Hyperspectral confocal fluorescence microscope system. It rapidly finds all emitting fluorescence species of an image, determining their relative concentrations without any a priori information. This patent-pending technology has been combined with Sandia's proprietary algorithms to form a complete system for the extraction of quantitative image information at diffraction-limited spatial resolutions of 250 nanometers (nm) in the x and y planes and 600 nm in z. The speed with which this information is acquired exceeds the acquisition of other available hyperspectral imaging microscopes.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.