Posted in | News | Business

Xtalic Enters Electric Vehicle Market with Materials that Improve Battery Charger Connector Wear by Up to 40 Times

Xtalic Corporation, a leader in providing nano-scale metal alloys and coatings that solve customers’ mission-critical materials problems, has announced it has entered the electric vehicle market with products that extend the life of connectors in electric battery chargers by up to 40 times.

Xtalic materials on EV connector pins shows no wear through past 10,000 mating cycles (Photo: Business Wire)

“As more electric-powered vehicles take to the highways, the life expectancy of their battery charging interfaces are becoming critical,” said Tom Clay, Xtalic’s chief executive officer. “Extending the lifecycle of the charger’s connector contacts has become an important customer satisfaction issue for electric vehicle manufacturers.”

Xtalic has applied its XTRONIC® and LUNA® nanostructured alloys to lengthen the service lives of electric vehicle charger connectors. Traditional connector contacts employ a silver-over-nickel-over-copper construction that wears through after 250 charge cycles. Xtalic replaces these layers with its materials to significantly enhance the connectors’ hardness, durability, and corrosion resistance. The Xtalic alloys have achieved up to 10,000 charge cycles in high normal force applications.

Xtalic products also can operate at 150 °C or higher — temperatures that may cause conventional materials to lose critical properties required for safe operation. All Xtalic materials are stable at high temperatures due to a carefully engineered crystal structure.

Connector companies and OEM’s are currently testing and qualifying the Xtalic materials, and the company expects to see them incorporated in the next generation of electric vehicles.

XTALIUM Coating Reduces Electric Vehicle Weight

Xtalic is also developing XTALIUMTM, a nanostructured aluminum alloy, to help improve range and performance in the electric vehicle market. This durable, corrosion-resistant coating enables the use of low-cost, lightweight magnesium alloy for automotive components. The magnesium parts weigh less than aluminum, and when coated with XTALIUM alloy, they have substantial corrosion protection. In addition, XTALIUM increases the corrosion resistance and performance of rare earth magnets.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.