Sound and Light Trapped by Disorder

Researchers from the Institut Català de Nanociència i Nanotecnologia (ICN2) and the Centre de Nanosciences et Nanotechnologies – C2N (CNRS / Université Paris-Sud) have proposed a new and counterintuitive approach using disordered structures to trap light (photons) and sound (phonons) at the same place. By using a specific pair of semiconductor materials (gallium-arsenide and aluminium-arsenide) stacked randomly, something that relaxes substantially the fabrication requirements, they show that not only the light and sound can be trapped at the nanoscale, but also their interaction is enhanced The results have been published in Physical Review Letters.

Sound and light are crucial for our life and represent the core in many energy, communication and information technologies. Their interaction allows many fundamental observations in Physics, from the detection of cosmic gravitational waves to the cooling of quantum systems into their quantum ground state. However, their interaction is subtle and weak. Enhancing their interaction requires confining both waves at the same place which is a considerable technological challenge. In nanotechnology, this has been solved by creating cavities relying on very carefully fabricated patterns. This approach is demanding and easily disturbed by disorder and defects. In a work recently published in Physical Review Letters a fully different approach is proposed, where symmetry and periodicity are not needed, and disorder is embraced. The work has been done in close collaboration with Dr. Daniel Lanzillotti-Kimura, a researcher at CNRS in France. The first author of the work is Guillermo Arregui and the last one is Dr Pedro David García, both from the ICN2 Phononic and Photonic Nanostructures Group led by ICREA Prof. Dr. Clivia M. Sotomayor-Torres.

Order, symmetry and periodicity are words that have always thrilled researchers. For physicists, the appeal is that regular systems tend to obey simple (or at least symmetric) laws. Even complex systems are simplified in their description, which helps understanding their underlying mechanisms. However, the world is complex. However, understanding the inherent complexity of nature ultimately requires departing from perfect symmetry and periodicity. Remarkably, as the authors show in this work, disorder and complexity can be exploited as a resource instead of being treated just as an unavoidable annoyance. In the recently published work, disorder is used to simultaneously localize sound and light at the nanoscale.

Researchers from the Institut Català de Nanociència i Nanotecnologia (ICN2) and the Centre de Nanosciences et Nanotechnologies – C2N (CNRS / Université Paris-Sud) propose a random multilayered semiconductor structure were a subtle combination of their material properties force the simultaneous co-localization of sound and light. The equations governing the propagation of light and sound in stacks made of gallium-arsenide (GaAs) and aluminium-arsenide (AlAs) are extremely similar, leading to an Anderson colocalization of both excitations in random lattices. This is due to a surprising matching in the contrast of their indices of refraction and their speeds of sound, respectively, something that does not happen, for example, with other similar materials like Si/Ge or InP/GaP. The colocalization in random lattices induces an enhancement of the interaction between the light and sound fields. This interaction relies on the fact that light carries momentum which can be transferred to an object and move it. As a counterpart, a moving object can shift the frequency of light. In everyday life, this interaction is extremely small resulting in negligible effects.

To enhance these mutual interactions, the approach followed by nanotechnology is to concentrate light in small volumes and make use of small objects for which these effects become observable. Here, we show that no particular design is required to achieve this mutual observable interaction, thus relaxing substantially the fabrication needs. This achievement may be used to exploit the interaction between light and sound in arbitrarily designed structures, thus relaxing the very demanding fabrication requirements currently needed in nanotechnology. The co-localization effect shown in the new work unlocks the access to unexplored localization phenomena and the engineering of light-matter interactions mediated by Anderson-localized states.

Article reference:

G. Arregui, N. D. Lanzillotti-Kimura, C. M. Sotomayor-Torres, and P. D. García. Anderson Photon-Phonon Colocalization in Certain Random Superlattices. Phys. Rev. Lett. 122, 043903. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.043903

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.