Researchers Identify Nanostructure of Ziegler-Natta Catalyst

The nanostructure of the heterogeneous Ziegler-Natta catalyst was clarified on the basis of cutting-edge analytical techniques.

Scientists from Japan Advanced Institute of Science and Technology (JAIST) and University of Torino (UNITO) have cooperatively clarified the nanostructure of the heterogeneous Ziegler-Natta catalyst by means of combined synchrotron X-ray analytical techniques, vibrational spectrocopies, and molecular simulations.

Understanding the structure and the working principle of practical catalysts is largely beneficial for designing catalysts towards desired performances. However, this is often infeasible due to inherent complexity of such catalysts. The Ziegler-Natta catalyst is one of the most sophisticated practical catalysts for its performance in producing desired polyolefins at extremely high yield. Nonetheless, the structure of the nanosized building unit of this catalyst has not been fully understood over six decades.

The collaborative research teams of Japan and Italy quantitatively determined the structural disorder and the dimensions of the building unit based on synchrotron X-ray total scattering analysis aided with molecular simulations. Further, by combining infrared spectroscopies with state-of-the-art DFT simulations, the morphology and the surface exposure of the building unit were clarified. The current research corresponds to the first attempt of adopting synchrotron X-ray total scattering and Far IR spectroscopy for the study of the Ziegler-Natta catalyst. Such the multi-faced approach successfully shed new light on the full elucidation of the nanostructure in practical heterogeneous catalysts.

Papers titled "Revisiting the identity of δ-MgCl2: Part I. Structural disorder studied by synchrotron X-ray total scattering", and "Revisiting the identity of δ-MgCl2: Part II. Morphology and exposed surfaces studied by vibrational spectroscopies and DFT calculation", both published in Journal of Catalysis, DOI: https://doi.org/10.1016/j.jcat.2020.03.002, and https://doi.org/10.1016/j.jcat.2020.04.017.

This research forms part of the research programme of DPI (P.O. Box 902, 5600 AX Eindhoven, the Netherlands), project #802.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.