Research Provides a Brand-New Scheme to Improve the Capability of Non-Noble Metal Catalysis

Supported nanoparticle catalysts have been widely studied as heterogeneous catalysts in industrial catalysis. Strong metal-support interaction (SMSI) is one of the key mechanisms for designing highly efficient supported catalysts. It serves various functions in general, such as increasing supported metal dispersion and promoting charge transfer. SMSI can also adjust ultimate catalytic activity and stability of the nanoparticles through geometric and electronic modification.

However, the classical SMSI is still subject to challenges like contradiction between activity and stability, instability issues of the overlayer in the reactions containing water and replacement of noble metal by cheap non-noble metal catalysts in industry.

Recently, the research team led by Prof. ZHANG Ying from the University of Science and Technology of China (USTC) first reported strong metal phosphide-phosphate support interaction (SMPSI), and gave a brand-new scheme to improve the catalytic activity, selectivity, stability, anti-oxidation, and anti-acid capacity of non-noble metal catalysts. This study, entitled "Strong Metal Phosphide-Phosphate Support Interaction for Enhanced Non-noble Metal Catalysis", was published in Advanced Materials.

The activation of P species on the support is the key point of SMPSI. It leads to generation of metal phosphide NPs and core-shell nanostructures formed by support migration onto the NPs at the same time. Better than the classical SMSIs, the encapsulation state of metal phosphide and charge transfer can be optimally regulated. Moreover, the strong interactions of Co2PL/MnP-3 even achieve better performance than noble metal like Pd/C and Pt/C on catalytic activity and stability while 100% hydrogenating multiple compounds into value-added fine chemicals. The SMPSI construction can also be extended to other systems, including Ni2PL/Mn3(PO4)2, Co2PL/LaPO4, and CoPL/CePO4.

SMPSI provides a new method of better designs on non-noble metal catalysts and the strong interaction between NPs and supports. Moreover, SMPSI makes it possible to replace noble metal catalysts with highly efficient and stable non-noble metal catalysts for harsh industrial reactions.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.