Nov 20 2007
The protection of the environment is one of the most urgent questions in the present world. The release of pollutant gases due to the excessive consumption of fossil fuel has lead scientists to the search for new channels for energy production, with the minimum pollution. This research work, carried out by Dr of Chemical Sciences Edilso Reguera Ruiz and a research team of the Institute of Materials and Reagents (IMRE) of the Universty of Havana is closely related to the subject.
This study intended to reveal the crystalline and electronic structure of porous molecular materials based on cyanometalates and the potential of their interaction with host molecules. The cyanometalates are structures which form when the atoms of transition metals such as Manganese (Mn), Iron (Fe), Copper (Co) and Nickel (Ni) become linked by means of cyanide bridged clusters (CN) to form three-dimensional nettings (see Figures 1 and 2). In many cases, such nettings have a porous structure.
According to Dr Reguera, “in such cases they can be considered as a prototype of porous molecular materials suitable for the separation and storage of small molecules such as Hydrogen and Light Hydrocarbons with potential applications in future energetic technologies”.
Up to that moment, the crystalline and electronic structure of the materials studied in this research work was not known in depth. The compression level of this structure presented limits to understand its features as porous materials. “Particularly, the studies relating to the particularities of its surface were almost non-existent. The studies carried out and the results reached involve an important contribution to fill this gap”.
The possible applications of this research work are connected to one of the most interesting options for the production of non-pollutant energy: That based on Hydrogen, which generates water as a residual sub-product. This new energetic technology demands several components, one of which is to find means for Hydrogen storage in a safe and profitable way. “One of the unsolved approaches, according to Dr Reguera, is to find porous moulds which retain a high hydrogen volume through physical adsorption in a condensed state nearly at room temperatures and, at the same time, they must be able to submit it, on request, with a low energetic consumption”. One of the most visible applications of this type of technology is the substitution of oil or diesel by hydrogen in goods vehicles.
In this context, porous molecular materials are a very attractive alternative as they are a lightweight storage.