Artificial Manmade Device Can Help Absorb Light for Solar Cells

While our direct knowledge of black holes in the universe is limited to what we can observe from thousands or millions of light years away, a team of Chinese physicists has proposed a simple way to design an artificial electromagnetic (EM) black hole in the laboratory.

In the Journal of Applied Physics, Huanyang Chen at Soochow University and colleagues have presented a design of an artificial EM black hole designed using five types of composite isotropic materials, layered so that their transverse magnetic modes capture EM waves to which the object is subjected. The artificial EM black hole does not let EM waves escape, analogous to a black hole trapping light. In this case, the trapped EM waves are in the microwave region of the spectrum.

The so-called metamaterials used in the experiment are artificially engineered materials designed to have unusual properties not seen in nature. Metamaterials have also been used in studies of invisibility cloaking and negative-refraction superlenses. The group suggests the same method might be adaptable to higher frequencies, even those of visible light.

"Development of artificial black holes would enable us to measure how incident light is absorbed when passing through them," says Chen. "They can also be applied to harvesting light in a solar-cell system."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.