The Flame Solid Oxide Fuel Cell Project

The Flame Sofc project will last for four years and has an overall budget of 13,545,627 Euro. Ikerlan, a member of IK4, and Fagor Electrodomésticos (Household Electrical Goods), both belonging to the MCC group, are the Basque companies participating in the research, together with centres from countries such as Germany, Italy, Denmark, Holland, Switzerland, Greece, Portugal, the United Kingdom, Hungary and Poland.

The process of generating heat and electricity with this type of cell is more direct and, thus, efficiency is increased. Traditional methods have to burn a fossil fuel in order to produce heat which, in turn, is transformed into mechanical work by means of a thermal engine. This engine is what drives the electric generator that produces electricity. Fuel cells, on the other hand, produce electricity directly by means of an electrochemical process, using fuels such as natural gas or butane, without the need for combustion.

The basis for this system is that fuel cells, unlike traditional batteries, do not run out, the reason being that the latter have a combustible fuel inside so as to function and this, once used up, means the battery ceases to work. A fuel cell, however, receives its energy/fuel from outside and thus, has an indefinite period of operation while this fuel is being supplied.

Apart from greater efficiency, this system presents a significant advantage in that it causes considerably less aggression to the environment. The fuels used are transformed into heat and electricity through an electrochemical process, with water and Co2 as by-products and minimum emissions of nitrogen oxides and other contaminants. Moreover, as they are very efficient systems, they emit a reduced quantity of greenhouse-effect gases. Together with these benefits, household appliances based on fuel cells are quieter and longer-lasting.

Initially the practical application of this technology will be of a domestic, household nature given that what is sought is the creation of dwellings and building capable of generating heat and electricity together from natural gas, butane, propane or diesel fuel. Also, in the longer term, fuel cells together with electric motors could be the basis for traction systems aimed at cars and other transport sector vehicles.

The fuel cell will also have other applications – in the field of auxiliary production systems for electricity in buses, trucks and all kinds of vessels, when the main motor is stopped, and also to supply electricity to telecommunications repeaters.

http://www.basqueresearch.com/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.