New Plastic Electrochromic Devices

The NANOEFFECT “Nanocomposites with High Colouration Efficiency for Electrochromic Smart Plastic Devices” project, led by the Fraunhofer-Institut Silicatforschung (ISC), is designing new electrochromic devices that are totally plastic and flexible, capable of changing colour on the simple application of an electric current. The main result of the project will be a new nanohybrid material with great electrochromic efficiency, to be integrated into plastic electrochromic devices with excellent characteristics in terms of cost, durability and range of colours. The end applications of these new electrochromic devices will be electrochromic spectacles as well as various applications in the textile and automotive sectors.

The project consortium includes companies from various sectors that will use its results such as ESSILOR, SOLVIONIC, FECSA, VUOS and MASER, the last being a Basque Country-based enterprise. Amongst the technology bodies figure CIDETEC-IK4, ISC (Germany), INSTM (Italy), ICMCB (France), IREQ (Canada) and UM (Portugal). The role of CIDETEC-IK4 in the project is the synthesis of new nanostructured electroactive polymers and the preparation of totally plastic electrochromic devices based on these nanomaterials.

http://www.basqueresearch.com/

Posted 22nd November

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.