Shape Memory Polymers Controlled using a Magnetic Field

In a joint project with the German Institute of Polymers in Darmstadt, GKSS scientists from the Institute of Polymer Research in Teltow near Berlin have succeeded in developing polymers with a “memory”. With the help of magnetic nanoparticles, it is possible to control the shape of these polymers, thus paving the way for exciting new applications in the field of medical technology. The results of this research have now been published in the U.S. journal PNAS (Proceedings of the National Academy of Sciences).

So-called shape-memory polymers have the ability to reassume their original shape following temporary deformation. This function can be activated by means of external stimuli such as an increase in ambient temperature. In collaboration with the German Institute of Polymers in Darmstadt, GKSS scientists from the Institute of Polymer Research in Teltow have now succeeded in developing a new controllable magnetic process that triggers the change in shape without the need for direct contact with the polymer. This process works on the basis of magnetic nanoparticles of iron oxide. These are finely distributed in the polymer and convert the energy from a magnetic field into heat. A desired temperature can be set by varying the proportion of nanoparticles in the polymer and the strength of the magnetic field. The scientists from Teltow and Darmstadt see applications principally in the field of medical technology.

For example, it will be possible to develop remotely controlled catheters.

“These catheters could be used to rinse, fill or drain organs or vessels without the need for extensive or painful surgery every time a modification to the therapy is required,” says Professor Andreas Lendlein, Head of the Institute of Polymer Research at GKSS in Teltow.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.