Posted in | News | Materials Science

Scientists Use Machine Learning Methods to Predict Superhard Materials

A group of Skoltech scientists used machine learning (ML) methods to predict superhard materials based on their crystal structure.

The research was published in the Journal of Applied Physics. This work is supported by Russian Science Foundation.

Superhard materials have recently attracted increasing research interest due to their potential implications for industries broadly ranging from oil production to high technology manufacturing. A superhard material has two crucial features, hardness and fracture toughness, that represent its resistance to deformation and crack propagation, respectively.

Materials with properties that would suit specific industry requirements can be found computationally using advanced methods of computational materials science backed by a good theoretical model to calculate the desired properties for superhard materials.

Efim Mazhnik, a PhD student at the Skoltech Center for Energy Science and Technology (Computational Materials Discovery Laboratory), guided by Skoltech and MIPT professor Artem R. Oganov, succeeded in building such a model using convolutional neural networks (CNN) on graphs, an ML method that enables predicting a material's properties from its crystal structure. Using a set of materials with known properties, you can teach CNN to calculate those properties for previously unfamiliar structures.

"Faced with a lack of experimental data on hardness and fracture toughness to properly train the models, we turned to more abundant data on elastic moduli and predicted their values to obtain the sought-for properties using the physical model we had created earlier," says Efim Mazhnik.

"In this study, we applied ML methods to calculate hardness and fracture toughness for over 120,000 crystal structures, both known and hypothetical, most of which have never been explored in terms of these properties. While our model confirms that diamond is the hardest known material, it suggests the existence of several dozen other potentially very hard or superhard materials," comments Artem Oganov.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.