Posted in | News | Electronics

Study on Perovskite Material may Lay Out a Solid Foundation for Advanced Electronics

As our lifestyles become ingrained in flexible electronics, smart devices, artificial intelligence, the internet of things, etc., high performance, electronic components that can perform high speed data collection, processing, and execution become a necessity. Certain perovskites are crystal structures that can be promising alternatives to silicon-based components for these next generation electronic applications.

Their cubic-like lattice makes them ideal for use as a base for growing oxide films to form heterostructures with unique electrical properties. The properties of these heterostructures depend on the charge transfer in the interfacial layer between the perovskite substrate and oxide overlayer. This charge transfer can be manipulated via either doping or through the fabrication process.

Now, researchers from Korea, led by Prof. Bongjin Simon Mun from Gwangju Institute of Science and Technology, use ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and low energy electron diffraction (LEED) to investigate how fabrication conditions (annealing in an oxygen-rich environment and an oxygen deficit, low-pressure environment)

for a particular perovskite material, SrTiO3-;one of the most popular substrates for growing oxide films-;affects its undoped surface and the resulting interfacial layer of the heterostructure. By using an undoped surface, the researchers wanted to examine the changes that occur on the surface of the substrate without interference from the dopants. "The presence of doping can interfere with correct interpretation of the surface defect states, which can be critical to apprehend the electrical properties of heterostructures. Our study on undoped SrTiO3 provides unbiased characteristics of SrTiOsubstrate," says Prof. Mun Their findings were made available online on 16 September 2021 and published in Volume 9 Issue 38 of the Journal of Materials Chemistry C.

In the oxygen environment, an electron depletion layer formed as the Sr atoms in the substrate migrated to the surface of the film to react with oxygen and form a stable oxide layer. In the low-pressure oxygen deficit environment, the formation of such a depletion layer was limited as the oxide layer was formed due to the reduction of the TiO2 layer that generated electrons.

In both environments, a similar oxide layer was formed, but the electronic properties of the structure differed as the electron depletion layer is key to the conductivity of the structure. "Our work shows clearly how the electrical properties of devices can be tuned by adjusting the population of electrons near the surface region, which is a very fundamental and important result indicating that future electronic devices can be realized with material characterization at the atomic level," says Prof. Mun. "In the long run, our study on SrTiO3 will lay out a solid foundation for advanced electronic devices that will enable a better lifestyle for us."

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.