University Researchers to Develop New and Cheaper Solar Energy

Chemists, physicists, materials scientists and electrical engineers in Manchester and London are embarking on a £1.5m project to develop new and potentially cheaper ways of generating solar power.

The three and a half year project, funded by the Engineering and Physical Sciences Research Council (EPSRC), will investigate a number of new and novel solar cell designs, in an attempt to produce a more efficient system for generating green energy.

The consortium of researchers, led by Professor Paul O'Brien from The University of Manchester's School of Chemistry and Professor Jenny Nelson from The Department of Physics at Imperial College London, will investigate new designs that utilise intrinsically inexpensive materials and cheap fabrication methodologies.

The research team are aiming to build demonstration hybrid solar cells that have the long-term potential to be mass-produced and to achieve an energy conversion efficiency approaching ten per cent.

The cells will be made from both organic polymeric carbon-based materials and small particles of inorganic semiconductors.

Most designs are expected to draw on nanotechnology, with researchers planning to use so-called PbS nanorods - small cylinders of lead sulphide that are around 100 times smaller than a human hair.

Academics will also use semiconductor quantum dots - extremely small particles measuring around one ten-millionth of an inch - to absorb light.

Professor O'Brien said: "Alternatives to fossil fuel-based electricity sources are needed urgently, to reduce the environmental impact of electrical power generation and to secure our supply of electricity in the future.

"The widespread implementation of solar electricity requires a significant reduction in cost and a successful outcome to this project has the potential to provide a step-change solar cell technology."

Professor Nelson said: "A major reduction in the cost of solar power through the use of low-cost materials could seriously accelerate the take-up of renewable energy technology and make it much more accessible to the developing world."

The project is funded equally by the EPSRC's Materials and Energy programmes and will employ four postdoctoral research associates and two PhD students across the two universities.

By spreading the work across chemistry, electrical engineering, physics and materials departments, the consortium will investigate areas such as materials synthesis and characterisation, device fabrication and system integration.

Research at the University of Manchester will involve academics from the School of Chemistry, The School of Electronic and Electrical Engineering, The School of Materials and The School of Physics and Astronomy - making it a truly interdisciplinary project.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.