Bayer MaterialScience Double Carbon Nanotube Production Capacity

Bayer MaterialScience AG is opening a second production facility for Baytubes®, its carbon nanotubes, at H.C. Starck GmbH in the town of Laufenburg on the German-Swiss border. The new facility has an annual capacity of 30 metric tons. Together with the pilot production plant for Baytubes® already located at the site, this now gives Bayer MaterialScience a total annual capacity of 60 metric tons in Laufenburg. Dr. Tony Van Osselaer, the member of the Board of Management of Bayer MaterialScience responsible for Production & Technology, told customers from all over the world who attended the opening ceremony: "This makes us one of the world’s leading manufacturers of carbon nanotubes and underlines our excellent credentials as a research-oriented company. Carbon nanotubes’ potential for innovation will ensure their long-term market success."

Estimates put the market potential for carbon nanotubes (CNT) in the coming years at several thousand metric tons per year. The main disadvantages of CNT production processes to date have been the high costs of synthesis and the relatively large quantities of unwanted impurities in the product.

These two problems have prevented the widespread industrial use of carbon nanotubes. Thanks to a special new synthesis process, Bayer MaterialScience is one of the few manufacturers able to offer commercially relevant quantities of CNT with consistent material purities well above the 95 percent mark. "The investment in Laufenburg represents an important step towards gaining access to large, lucrative industrial CNT applications and securing long-term market share," said Martin Schmid, head of global Baytubes® operations at Bayer MaterialScience.

The Laufenburg location has a number of advantages for Baytubes® production. Firstly, as a world leader in the production of refractory metals, engineering ceramics and electronic chemicals, H.C. Starck has the necessary technical and logistics setup - for example, in terms of production facilities, energy and gas supplies and waste gas purification.

Secondly, Bayer MaterialScience benefits from H.C. Starck’s many years of expertise in processing technology and systems design for high-temperature gas phase processes. "In H.C. Starck - a specialist in customized particle design - Bayer MaterialScience has the ideal partner for the successful manufacture and further development of Baytubes®. Our success in up-scaling this sophisticated production process offers impressive proof of this,"
said Dr. Heinz Heumüller, Managing Director of H.C. Starck.

The new, highly automated closed-loop facility is used for production and for development work to optimize processes and procedures. "Our aim is to use the knowledge obtained for the next up-scaling of the production process," explained Dr. Ralph Weber, Production Manager for Carbon Nanotubes, who shares responsibility for the operation and further development of the facility in Laufenburg with Dr. Theo König from H.C. Starck. In the medium term, Bayer MaterialScience is planning to build a large-scale Baytubes® production facility in Germany with an annual capacity of 3,000 metric tons.

CNT have unusual properties. Depending on their molecular structure, they can either conduct electricity better than copper or act like a semiconductor. Their thermal conductivity rivals that of diamond, the best naturally occurring conductor of heat, and their high modulus of elasticity and tensile strength gives them five times the mechanical strength of steel.

Bayer MaterialScience helps numerous companies develop applications for Baytubes®. The aim is to build up a broad CNT application spectrum. For example, Baytubes® have tried-and-tested antistatic properties in machine components made from polyether etherketone (PEEK). The manufacture of antistatic packaging films for computer chips and plastic containers for the protected transport of integrated circuits also provides great potential. In automotive engineering, Baytubes® could be added to plastics used for bodywork components. These components - for example fenders made from a polyphenylene oxide/polyamide blend - would then not have to be given a conductive primer, thus resulting in significant cost savings. A number of sports goods manufacturers already use Baytubes® to improve the strength and stiffness of plastics. Applications in this field include surfboards, baseball bats, and sticks for cross-country skiing and Nordic walking.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.