Posted in | Thermal Analysis

Thermal Analysis of Tires

Thermal Analysis of Tires

In the webinar titled "Thermal Analysis of Tires", we describe a number of techniques and methods that can be used to characterize the physical properties of tire tread compounds.

Tire Tread

The tread of the tire is in direct contact with the surface of the road. The tread formulation and the design of the tread pattern are therefore decisive factors for most tire properties such as low rolling resistance, good wet traction and high resistance to abrasion.

The ingredients of the tire tread have a significant impact on these properties. These are investigated using various thermal analysis techniques.

Thermal Analysis of Tires

The most important effects that can be analyzed by DSC are the melting point, melting range, and melting behavior. DSC is also used to determine the heat of fusion, the glass transition, and oxidative stability.

TGA measures weight changes. The main applications of TGA are content determination, thermal stability, decomposition kinetics, and compositional analysis.

DMA is used to determine the modulus and damping behavior of materials. It allows tire properties such as rolling resistance or grip behavior to be directly predicted.

Other Webinars from Mettler Toledo - Thermal Analysis

Tell Us What You Think

Do you have a review, update or anything you would like to add to this content?

Leave your feedback
Your comment type
Submit

Materials Webinars by Subject Matter

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.